Suppr超能文献

基于机器学习的慢性心力衰竭死亡率风险因素分析与预测模型构建

Machine learning-based risk factor analysis and prediction model construction for mortality in chronic heart failure.

作者信息

Xu Qian, Yu Ruicong, Cai Xue, Chen Guanjie, Zheng Yueyue, Xu Cuirong, Sun Jing

机构信息

Zhongda Hospital, Southeast University, Nanjing, China.

School of Medicine, Southeast University, Nanjing, China.

出版信息

J Glob Health. 2025 Sep 12;15:04242. doi: 10.7189/jogh.15.04242.

Abstract

BACKGROUND

Given the high global mortality burden of chronic heart failure (CHF) and the limitations of traditional risk prediction tools in accuracy and comprehensiveness, along with the potential of machine learning (ML) to improve prediction performance and the ability of a health ecology framework to systematically identify multi-dimensional risk factors, we aimed to develop an ML-based mortality risk prediction model for CHF and analyse its risk factors using a health ecology framework.

METHODS

We enrolled 489 CHF patients from the Jackson Heart Database, with all-cause mortality during a 10-year follow-up period designated as the outcome measure. Guided by a five-layer health ecology framework (individual traits, behavioural characteristics, interpersonal relationships, work/living conditions, and macro policies), we selected 58 variables for analysis. The cohort was split into 7:3 training/validation sets. Random forest (RF) and k-nearest neighbour (KNN) models identified mortality predictors after five oversampling techniques addressed data imbalance before modelling. We trained seven ML algorithms, validated them via 10-fold cross-validation, and compared them using accuracy, the area under the curve (AUC), and other metrics.

RESULTS

We identified 24 key factors: 19 for individual traits (age, body mass index (BMI), antihypertensive medication, hypoglycaemic medication, antiarrhythmic medication, systolic blood pressure, glycated haemoglobin, glomerular filtration rate, left ventricular ejection fraction, left ventricular diastolic diameter, left ventricular mass, high-density lipoproteins, low-density lipoproteins, triglycerides, total cholesterol, cardiovascular surgical history, mitral annular early diastolic peak velocity of motion); three for individual behavioural characteristics (dark greens intake, egg intake, and night-time sleep duration); and two for living and working conditions (favourite food shop at three-kilometre radius, proportion of poor people in the place of residence). The model constructed using synthetic minority over-sampling technique combined with edited nearest neighbours (SMOTE-ENN) processing and applying extreme gradient boosting (XGBoost) model was optimal, with an accuracy of 81.58%, an AUC value of 0.83, a precision of 0.87, a recall of 0.84, and an F1 value of 0.86 for the prediction of mortality at 10-year follow up.

CONCLUSIONS

We systematically categorised CHF mortality risk factors by integrating health ecology theory and ML. The SMOTE-ENN and XGBoost model demonstrated high accuracy, though further optimisation is needed to enhance clinical utility in CHF risk prediction.

摘要

背景

鉴于慢性心力衰竭(CHF)在全球造成的高死亡率负担,以及传统风险预测工具在准确性和全面性方面的局限性,同时考虑到机器学习(ML)在提高预测性能方面的潜力以及健康生态框架系统识别多维风险因素的能力,我们旨在开发一种基于ML的CHF死亡率风险预测模型,并使用健康生态框架分析其风险因素。

方法

我们从杰克逊心脏数据库中纳入了489例CHF患者,将10年随访期内的全因死亡率指定为结局指标。在五层健康生态框架(个体特征、行为特征、人际关系、工作/生活条件和宏观政策)的指导下,我们选择了58个变量进行分析。该队列被分为7:3的训练/验证集。在建模前,通过五种过采样技术解决数据不平衡问题后,随机森林(RF)和k近邻(KNN)模型识别出死亡率预测因子。我们训练了七种ML算法,通过10折交叉验证对它们进行验证,并使用准确率、曲线下面积(AUC)和其他指标对它们进行比较。

结果

我们确定了24个关键因素:19个个体特征因素(年龄、体重指数(BMI)、抗高血压药物、降血糖药物、抗心律失常药物、收缩压、糖化血红蛋白、肾小球滤过率、左心室射血分数、左心室舒张直径、左心室质量、高密度脂蛋白、低密度脂蛋白、甘油三酯、总胆固醇、心血管手术史、二尖瓣环舒张早期运动峰值速度);3个个体行为特征因素(深绿色蔬菜摄入量、鸡蛋摄入量和夜间睡眠时间);以及2个生活和工作条件因素(半径3公里内最喜欢的食品店、居住地贫困人口比例)。使用合成少数过采样技术结合编辑最近邻(SMOTE-ENN)处理并应用极端梯度提升(XGBoost)模型构建的模型是最优的,在预测10年随访期死亡率时,准确率为81.58%,AUC值为0.83,精确率为0.87,召回率为0.84,F1值为0.86。

结论

我们通过整合健康生态理论和ML系统地对CHF死亡率风险因素进行了分类。SMOTE-ENN和XGBoost模型显示出较高的准确性,不过仍需要进一步优化以提高其在CHF风险预测中的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c269/12427600/f853f1c23f1f/jogh-15-04242-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验