Suppr超能文献

迈向术中低血压的可靠预测:基于深度学习和平均动脉压衍生方法的多中心评估

Towards reliable prediction of intraoperative hypotension: a cross-center evaluation of deep learning-based and MAP-derived methods.

作者信息

Chaari Nada, Winski Greg, Hallbäck Magnus, Lundström Niclas, Björne Håkan, Jacobsson Martin

机构信息

Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11, Huddinge, 141 52, Sweden.

Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Huddinge, 141 86, Sweden.

出版信息

J Clin Monit Comput. 2025 Sep 12. doi: 10.1007/s10877-025-01357-0.

Abstract

Intraoperative hypotension (IOH) is associated with an increased risk of heart and kidney complications. Although AI tools aim to predict IOH, their real-world reliability is often overstated due to biased data selection. This study introduces a framework to enhance reliability by: (1) including borderline blood pressure cases (65-75 mmHg, the "Gray Zone"), (2) comparing AI model to simple blood pressure threshold, and (3) validating across diverse surgical cohorts, centers and demographics. Using datasets from Karolinska University Hospital (Sweden) and VitalDB (Korea), we found AI model performs better than MAP threshold method in more ambiguous cases. In contrast, when hypotensive and non-hypotensive cases had clearly separated MAP values, both methods performed similarly well. Cross-validation revealed asymmetric generalizability: models trained on datasets containing more borderline (Gray Zone) cases generalized better to datasets with clearer class separation, whereas the reverse struggled. To ensure fair model comparison and reduce dataset-specific bias, we standardized the MAP difference between positive (hypotension) and negative (non-hypotension) samples at the time of prediction. This virtually eliminated the class separation and demonstrated that inflated performance in some datasets can be attributed to selection bias rather than true model generalizability. Age also influenced generalization: Cross-age validation revealed models trained on older patients generalized better to younger cohorts, whereas differences in ASA classification had minimal effect. These findings highlight the need for realistic validation to bridge the gap between AI research and clinical practice.

摘要

术中低血压(IOH)与心脏和肾脏并发症风险增加相关。尽管人工智能工具旨在预测IOH,但由于数据选择存在偏差,其在现实世界中的可靠性常常被高估。本研究引入了一个框架来提高可靠性,方法包括:(1)纳入临界血压病例(65 - 75 mmHg,即“灰色区域”),(2)将人工智能模型与简单血压阈值进行比较,以及(3)在不同的手术队列、中心和人群中进行验证。使用卡罗林斯卡大学医院(瑞典)和VitalDB(韩国)的数据集,我们发现人工智能模型在更模糊的病例中比平均动脉压(MAP)阈值法表现更好。相比之下,当低血压和非低血压病例的MAP值有明显区分时,两种方法的表现相似。交叉验证揭示了不对称的泛化性:在包含更多临界(灰色区域)病例的数据集中训练的模型,对类别区分更清晰的数据集泛化性更好,反之则较差。为确保公平的模型比较并减少特定数据集偏差,我们在预测时对阳性(低血压)和阴性(非低血压)样本之间的MAP差异进行了标准化。这几乎消除了类别区分,并表明某些数据集中夸大的性能可能归因于选择偏差而非真正的模型泛化性。年龄也影响泛化性:跨年龄验证表明,在老年患者数据上训练的模型对年轻队列的泛化性更好,而美国麻醉医师协会(ASA)分类的差异影响最小。这些发现凸显了进行现实验证以弥合人工智能研究与临床实践之间差距的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验