Suppr超能文献

单路径采样蒙特卡罗算法中的平流、扩散和线性输运:对几何细化不敏感。

Advection, diffusion and linear transport in a single path-sampling Monte-Carlo algorithm: Getting insensitive to geometrical refinement.

作者信息

Ibarrart Loris, Blanco Stéphane, Caliot Cyril, Dauchet Jérémi, Eibner Simon, El Hafi Mouna, Farges Olivier, Forest Vincent, Fournier Richard, Gautrais Jacques, Konduru Raj, Penazzi Léa, Trégan Jean-Marc, Vourc'h Thomas, Yaacoub Daniel

机构信息

Université de Toulouse, Mines Albi, UMR- Centre RAPSODEE, Campus Jarlard, Albi CT Cedex 09, France.

LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.

出版信息

PLoS One. 2025 Sep 12;20(9):e0330604. doi: 10.1371/journal.pone.0330604. eCollection 2025.

Abstract

We address the question of numerically simulating the coupling of diffusion, advection and one-speed linear transport, with a specific focus on managing geometrical complexity. We base our work on recent advances from the computer graphics community, which has developed Monte Carlo algorithms simulating linear radiation transport in physically realistic scenes, with numerical costs that remain unaffected by geometrical refinement: adding more details to the scene description does not impact the computation time. The resulting benefits in terms of engineering flexibility are already fully integrated into the cinema industry and are gradually being adopted by the video game industry. Here we demonstrate that the same insensitivity to the geometric complexity can be achieved when considering not only one-speed linear transport, but also its coupling with diffusion and advection. In this case, pure linear-transport paths are replaced with advection-diffusion/linear-transport paths, which are composed of subpaths. Each subpath represents one of the three physical phenomena, and coupling is handled by switching from one subpath (i.e. phenomenon) to another. This approach is illustrated using a porous medium involving up to 10,000 pores, with the computation time being strictly independent of the number of pores, showing its ability to facilitate engineering calculations in complex geometries.

摘要

我们探讨了对扩散、平流和单速线性输运的耦合进行数值模拟的问题,特别关注对几何复杂性的处理。我们的工作基于计算机图形学界的最新进展,该领域已开发出在物理逼真场景中模拟线性辐射输运的蒙特卡罗算法,其数值成本不受几何细化的影响:增加场景描述的更多细节不会影响计算时间。由此在工程灵活性方面带来的好处已完全融入电影行业,并正逐渐被电子游戏行业采用。在此我们证明,当不仅考虑单速线性输运,还考虑其与扩散和平流的耦合时,同样可以实现对几何复杂性的不敏感性。在这种情况下,纯线性输运路径被平流 - 扩散/线性输运路径所取代,这些路径由子路径组成。每个子路径代表三种物理现象之一,耦合通过从一个子路径(即现象)切换到另一个子路径来处理。使用包含多达10,000个孔隙的多孔介质对该方法进行了说明,计算时间严格独立于孔隙数量,表明其有能力促进复杂几何形状中的工程计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c01b/12431781/3a33cd31e223/pone.0330604.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验