Blanco Stéphane, Fournier Richard
Laboratoire d'Energétique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France.
Phys Rev Lett. 2006 Dec 8;97(23):230604. doi: 10.1103/PhysRevLett.97.230604. Epub 2006 Dec 7.
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
在有界域的首次返回时间统计领域中,短路径可定义为那些扩散近似不适用的路径。这是众多关于驻留时间分布特征的开放性问题的根源。我们在此展示了如何推导出一般的积分约束,通过对长路径应用扩散近似来间接处理短路径统计。应用于低克努森极限下分布的矩会得到简单的实际结果和新颖的物理图像。