Xu Chenhua, Liu Dan, Cen Jian, Xiong Jianbin, Wang Na, Liu Xi
School of automation, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
Sci Rep. 2025 Sep 12;15(1):32481. doi: 10.1038/s41598-025-14243-1.
When wind turbines operate in complex environments, planetary gearboxes easily generate faults that will lead to increased wreck of the equipment or transmission failures. In this paper, a CNN model with adaptive parameters is proposed to realize the identification of planetary gearbox faults and improve the real-time performance and accuracy of fault diagnosis. Firstly, Ensemble Empirical Mode Decomposition (EEMD) is applied to scale the one-dimensional signal to solve the modal mixing problem of input data. Gramian Angular Difference Fields (GADF) is used to convert the processed data into images as the input of CNN model. Secondly, to capture more information and reduce the risk of overfitting, two convolutional neural networks incorporating different activation functions are connected in parallel to propose a multilayer CNN model structure. Additionally, Pied Kingfisher Optimization algorithm (PKO) is improved by integrating Tent chaotic mapping, second-order optimization and simulated annealing algorithm to optimize the multilayer CNN model automatically. Finally, the experimental results show that this improved model achieves real-time diagnosis due to the adaptive parameters, the diagnosis accuracy exceeds 95% under the same proportion of samples, and over 85% under the different proportions of samples. This approach significantly enhances planetary gearbox fault identification reliability.
当风力涡轮机在复杂环境中运行时,行星齿轮箱很容易产生故障,这将导致设备损坏增加或传动故障。本文提出了一种具有自适应参数的卷积神经网络(CNN)模型,以实现行星齿轮箱故障的识别,并提高故障诊断的实时性和准确性。首先,应用总体经验模态分解(EEMD)对一维信号进行尺度化处理,以解决输入数据的模态混叠问题。利用格拉姆角差分场(GADF)将处理后的数据转换为图像,作为CNN模型的输入。其次,为了捕获更多信息并降低过拟合风险,将两个包含不同激活函数的卷积神经网络并联,提出了一种多层CNN模型结构。此外,通过集成帐篷混沌映射、二阶优化和模拟退火算法对翠鸟优化算法(PKO)进行改进,以自动优化多层CNN模型。最后,实验结果表明,该改进模型由于具有自适应参数而实现了实时诊断,在相同样本比例下诊断准确率超过95%,在不同样本比例下超过85%。该方法显著提高了行星齿轮箱故障识别的可靠性