Suppr超能文献

基于强化学习的机器人避障运动规划

Robot movement planning for obstacle avoidance using reinforcement learning.

作者信息

Schneider Linda-Sophie, Peng Junyan, Maier Andreas

机构信息

Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Sci Rep. 2025 Sep 12;15(1):32506. doi: 10.1038/s41598-025-17740-5.

Abstract

In modern industrial and laboratory environments, robotic arms often operate in complex, cluttered spaces. Ensuring reliable obstacle avoidance and efficient motion planning is therefore essential for safe performance. Motivated by the shortcomings of traditional path planning methods and the growing demand for intelligent automation, we propose a novel reinforcement learning framework that combines a modified artificial potential field (APF) method with the Deep Deterministic Policy Gradient algorithm. Our model is formulated in a continuous environment, which more accurately reflects real-world conditions compared to discrete models. This approach directly addresses the common local optimum issues of conventional APF, enabling the robot arm to navigate complex three-dimensional spaces, optimize its end-effector trajectory, and ensure full-body collision avoidance. Our main contributions include the integration of reinforcement learning factors into the APF framework and the design of a tailored reward mechanism with a compensation term to correct for suboptimal motion directions. This design not only mitigates the inherent limitations of APF in environments with closely spaced obstacles, but also improves performance in both simple and complex scenarios. Extensive experiments show that our method achieves safe and efficient obstacle avoidance with fewer steps and lower energy consumption compared to baseline models, including a TD3-based variant. These results clearly demonstrate the significant potential of our approach to advance robot motion planning in practical applications.

摘要

在现代工业和实验室环境中,机器人手臂常常在复杂、杂乱的空间中运行。因此,确保可靠的避障和高效的运动规划对于安全运行至关重要。鉴于传统路径规划方法的缺点以及对智能自动化的需求不断增长,我们提出了一种新颖的强化学习框架,该框架将改进的人工势场(APF)方法与深度确定性策略梯度算法相结合。我们的模型是在连续环境中构建的,与离散模型相比,它能更准确地反映现实世界的情况。这种方法直接解决了传统APF常见的局部最优问题,使机器人手臂能够在复杂的三维空间中导航,优化其末端执行器轨迹,并确保全身避障。我们的主要贡献包括将强化学习因素整合到APF框架中,以及设计一种带有补偿项的定制奖励机制,以纠正次优运动方向。这种设计不仅减轻了APF在障碍物间距较小的环境中的固有局限性,还提高了在简单和复杂场景中的性能。大量实验表明,与包括基于TD3的变体在内的基线模型相比,我们的方法以更少的步数和更低的能耗实现了安全高效的避障。这些结果清楚地证明了我们的方法在实际应用中推进机器人运动规划的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bfb/12432133/8a56f5943de0/41598_2025_17740_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验