Suppr超能文献

基于卷积表面建模和计算流体动力学模拟的肺功能预测方法

Pulmonary Function Prediction Method Based on Convolutional Surface Modeling and Computational Fluid Dynamics Simulation.

作者信息

Lian Xianhui, Hu Tianliang, Ma Songhua, Ma Dedong

机构信息

School of Mechanical Engineering, Shandong University, Jinan 250061, China.

Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan 250061, China.

出版信息

Healthcare (Basel). 2025 Sep 2;13(17):2196. doi: 10.3390/healthcare13172196.

Abstract

The pulmonary function test holds significant clinical value in assessing the severity, prognosis, and treatment efficacy of respiratory diseases. However, the test is limited by patient compliance, thereby limiting its practical application. Moreover, it only reflects the current state of the patient and cannot directly indicate future health trends or prognosis. Computational fluid dynamics (CFD), combined with airway models built from medical image data, can assist in analyzing a patient's ventilation function, thus addressing the aforementioned issues. However, current airway models have shortcomings in accurately representing the structural features of a patient's airway. Additionally, these models exhibit geometric defects such as low smoothness, topological errors, and noise, which further reduce their usability. This study generates airway skeletons based on CT data and, in combination with convolutional surface technology, proposes an individualized airway modeling method to solve these deficiencies. This study also provides a method for predicting a patient's lung function based on the constructed airway model and using CFD simulation technology. This study also explores the application of this method in preoperative prediction of the required extent of airway expansion for patients with large airway stenosis. Based on airway skeleton data extracted from patient CT images, a personalized airway model is constructed using convolutional surface technology. The airway model is simulated according to the patient's clinical statistical values of pulmonary function to obtain airway simulation data. Finally, a regression equation is constructed between the patient's measured pulmonary function values and the airway simulation data to predict the patient's pulmonary function values based on the airway simulation data. To preliminarily demonstrate the above method, this study used the prediction of FEV1 in patients with large airway stenosis as an example for a proof-of-concept study. A linear regression model was constructed between the outlet flow rate from the simulation of the stenosed airway and the patient's measured FEV1 values. The linear regression model achieved a prediction result of RMSE = 0.0246 and R = 0.9822 for the test set. Additionally, preoperative predictions were made for the degree of airway dilation needed for patients with large airway stenosis. According to the linear regression model, the proportion of airway radius expansion required at the stenotic position to achieve normal FEV1 was calculated as 72.86%. This study provides a method for predicting patient pulmonary function based on CFD simulation technology and convolutional surface technology. This approach addresses, to some extent, the limitations in pulmonary function testing and accuracy caused by patient compliance. Meanwhile, this study provides a method for preoperative evaluation of airway dilation therapy.

摘要

肺功能测试在评估呼吸系统疾病的严重程度、预后及治疗效果方面具有重要的临床价值。然而,该测试受患者依从性的限制,从而限制了其实际应用。此外,它仅反映患者的当前状态,无法直接表明未来的健康趋势或预后。计算流体动力学(CFD)与基于医学图像数据构建的气道模型相结合,可辅助分析患者的通气功能,从而解决上述问题。然而,当前的气道模型在准确呈现患者气道的结构特征方面存在不足。此外,这些模型存在几何缺陷,如平滑度低、拓扑错误和噪声,这进一步降低了它们的可用性。本研究基于CT数据生成气道骨架,并结合卷积曲面技术,提出一种个性化气道建模方法以解决这些缺陷。本研究还提供了一种基于构建的气道模型并使用CFD模拟技术预测患者肺功能的方法。本研究还探索了该方法在大气道狭窄患者气道扩张所需范围的术前预测中的应用。基于从患者CT图像中提取的气道骨架数据,使用卷积曲面技术构建个性化气道模型。根据患者肺功能的临床统计值对气道模型进行模拟,以获得气道模拟数据。最后,在患者的实测肺功能值与气道模拟数据之间构建回归方程,以基于气道模拟数据预测患者的肺功能值。为初步验证上述方法,本研究以大气道狭窄患者的FEV1预测为例进行概念验证研究。在狭窄气道模拟的出口流速与患者的实测FEV1值之间构建线性回归模型。该线性回归模型对测试集的预测结果为RMSE = 0.0246,R = 0.9822。此外,对大气道狭窄患者所需的气道扩张程度进行了术前预测。根据线性回归模型,计算出狭窄部位实现正常FEV1所需的气道半径扩张比例为72.86%。本研究提供了一种基于CFD模拟技术和卷积曲面技术预测患者肺功能的方法。这种方法在一定程度上解决了肺功能测试中因患者依从性导致的局限性和准确性问题。同时,本研究提供了一种气道扩张治疗术前评估的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e38/12428586/e94076f73aed/healthcare-13-02196-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验