Suppr超能文献

日本真实世界环境中晚期非鳞状非小细胞肺癌组织样本的肿瘤细胞比例评估:ASTRAL研究

Tumor Cell Proportion Assessment in Advanced Non-Squamous Non-Small Cell Lung Cancer Tissue Samples in Real-World Settings in Japan: The ASTRAL Study.

作者信息

Hatanaka Kanako C, Nishino Kazumi, Yokose Tomoyuki, Tanaka Hiroshi, Motoi Noriko, Taguchi Kenichi, Tamai Yoichi, Hirai Takehiro, Yabuki Yutaka, Hatanaka Yutaka

机构信息

Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo 060-8648, Japan.

Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan.

出版信息

Diagnostics (Basel). 2025 Aug 26;15(17):2165. doi: 10.3390/diagnostics15172165.

Abstract

: Identification of driver gene alterations helps determine first-line treatment for non-squamous non-small cell lung cancer (NSCLC). Precise assessment of tumor cell proportion is critical for accurate detection of gene alterations. ASTRAL was a multicenter, prospective, observational study to investigate the agreement in tumor cell proportion assessments between different raters. : Tissues collected in daily clinical practice from patients with advanced NSCLC were used. Raters included local pathologists, a Central Pathology Committee (CPC), and an artificial intelligence (AI) algorithm. Hematoxylin and eosin-stained slides were assessed by local pathologists, and digitized images of those slides were assessed by the CPC and the AI algorithm. The primary endpoint was agreement in assessment of tumor cell proportion between local pathologists and the CPC, as determined using the intraclass correlation coefficient (ICC). Secondary endpoints included agreement between the AI algorithm and local pathologists or the CPC. : Tissue samples from 204 patients were assessed. The ICC for local pathologists vs. the CPC showed poor to moderate agreement (0.588 [95% confidence interval (CI) 0.483-0.674]). The AI algorithm showed moderate agreement with the CPC (ICC 0.652 [95% CI 0.548-0.733]), and poor to moderate agreement with local pathologists (ICC 0.465 [95% CI 0.279-0.604]). : The ICC for the AI algorithm vs. the CPC was numerically highest among the rater pairs, indicating a level of usefulness for the algorithm. Continued efforts are needed to ensure the accurate estimation of tumor cell proportion. Integration of AI algorithms in real-world practice may contribute to this.

摘要

驱动基因改变的识别有助于确定非鳞状非小细胞肺癌(NSCLC)的一线治疗方案。精确评估肿瘤细胞比例对于准确检测基因改变至关重要。ASTRAL是一项多中心、前瞻性、观察性研究,旨在调查不同评估者之间肿瘤细胞比例评估的一致性。:使用在日常临床实践中收集的晚期NSCLC患者的组织。评估者包括当地病理学家、中央病理委员会(CPC)和一种人工智能(AI)算法。苏木精和伊红染色的玻片由当地病理学家评估,这些玻片的数字化图像由CPC和AI算法评估。主要终点是使用组内相关系数(ICC)确定的当地病理学家和CPC之间在肿瘤细胞比例评估上的一致性。次要终点包括AI算法与当地病理学家或CPC之间的一致性。:对204例患者的组织样本进行了评估。当地病理学家与CPC的ICC显示一致性较差至中等(0.588[95%置信区间(CI)0.483 - 0.674])。AI算法与CPC显示中等一致性(ICC 0.652[95%CI 0.548 - 0.733]),与当地病理学家显示较差至中等一致性(ICC 0.465[95%CI 0.279 - 0.604])。:在评估者对中,AI算法与CPC的ICC在数值上最高,表明该算法具有一定的实用性。需要持续努力以确保准确估计肿瘤细胞比例。在实际应用中整合AI算法可能有助于此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验