Suppr超能文献

增强临床医生对人工智能诊断的信任:一个用于置信度校准和透明度的动态框架。

Enhancing Clinician Trust in AI Diagnostics: A Dynamic Framework for Confidence Calibration and Transparency.

作者信息

Yu Yunguo, Gomez-Cabello Cesar A, Haider Syed Ali, Genovese Ariana, Prabha Srinivasagam, Trabilsy Maissa, Collaco Bernardo G, Wood Nadia G, Bagaria Sanjay, Tao Cui, Forte Antonio J

机构信息

Zyter|TruCare, Rockville, MD 20852, USA.

Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA.

出版信息

Diagnostics (Basel). 2025 Aug 30;15(17):2204. doi: 10.3390/diagnostics15172204.

Abstract

Artificial Intelligence (AI)-driven Decision Support Systems (DSSs) promise improvements in diagnostic accuracy and clinical workflow efficiency, but their adoption is hindered by inadequate confidence calibration, limited transparency, and poor alignment with real-world decision processes, which limit clinician trust and lead to high override rates. We developed and validated a dynamic scoring framework to enhance trust in AI-generated diagnoses by integrating AI confidence scores, semantic similarity measures, and transparency weighting into the override decision process using 6689 cardiovascular cases from the MIMIC-III dataset. Override thresholds were calibrated and validated across varying transparency and confidence levels, with override rate as the primary acceptance measure. The implementation of this framework reduced the override rate to 33.29%, with high-confidence predictions (90-99%) overridden at a rate of only 1.7%, and low-confidence predictions (70-79%) at a rate of 99.3%. Minimal transparency diagnoses had a 73.9% override rate compared to 49.3% for moderate transparency. Statistical analyses confirmed significant associations between confidence, transparency, and override rates ( < 0.001). These findings suggest that enhanced transparency and confidence calibration can substantially reduce override rates and promote clinician acceptance of AI diagnostics. Future work should focus on clinical validation to optimize patient safety, diagnostic accuracy, and efficiency.

摘要

人工智能(AI)驱动的决策支持系统(DSS)有望提高诊断准确性和临床工作流程效率,但其应用受到信心校准不足、透明度有限以及与现实世界决策过程匹配度差的阻碍,这些因素限制了临床医生的信任并导致高否决率。我们开发并验证了一个动态评分框架,通过使用MIMIC-III数据集中的6689例心血管病例,将AI信心分数、语义相似性度量和透明度权重整合到否决决策过程中,以增强对AI生成诊断的信任。否决阈值在不同的透明度和信心水平上进行了校准和验证,以否决率作为主要接受指标。该框架的实施将否决率降低到了33.29%,高信心预测(90-99%)的否决率仅为1.7%,低信心预测(70-79%)的否决率为99.3%。最低透明度诊断的否决率为73.9%,而中等透明度的否决率为49.3%。统计分析证实了信心、透明度和否决率之间存在显著关联(<0.001)。这些发现表明,提高透明度和信心校准可以大幅降低否决率,并促进临床医生对AI诊断的接受。未来的工作应侧重于临床验证,以优化患者安全、诊断准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9a/12428550/5fd1aaa61aa9/diagnostics-15-02204-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验