Smirnov Konstantin S
Univ. Lille, CNRS, UMR 8516- LASIRe-Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement, F-59000 Lille, France.
Molecules. 2025 Sep 4;30(17):3619. doi: 10.3390/molecules30173619.
Structure and nonlinear spectra of the basal surface of ice Ih were investigated by molecular dynamics simulations. At a temperature significantly lower than the melting temperature Tm, the ice structure at the interface is only weakly perturbed by the presence of surface. The computed nonlinear spectrum of the interface well agrees with the experimental data and the results of the calculations provide the molecular-level interpretation of spectral features. In particular, the ice surface specific positive peaks in the Im[χ(2)] spectrum at ∼3180 cm and at ∼3420 cm were found to result from the low- and high-frequency vibrational modes of quadruply H-bonded surface molecules, respectively. The spectrum of the crystalline ice interface is significantly affected by intermolecular interactions. Upon increasing the temperature, the structural disorder extends to the second water bilayer. The thickness of the premelted water layer of 6-8 Å can be estimated at the temperature by ca. 5 K below Tm. The increase in the temperature results in a change in the intensity and shape of the nonlinear spectrum of the ice Ih interface. The changes can be explained by the interconversion between different H-bonded surface species and by an increase in disordering of water molecules that reduces strength of intermolecular interactions. Results of the present work contribute to our understanding of the structure-spectrum relationship of the ice/air interface, and shed light on the origins of features in the nonlinear spectra of the system.
通过分子动力学模拟研究了冰Ih基面的结构和非线性光谱。在远低于熔点Tm的温度下,界面处的冰结构仅受到表面存在的微弱扰动。计算得到的界面非线性光谱与实验数据吻合良好,计算结果为光谱特征提供了分子水平的解释。特别是,发现在Im[χ(2)]光谱中约3180 cm和约3420 cm处的冰表面特定正峰分别来自四重氢键表面分子的低频和高频振动模式。结晶冰界面的光谱受到分子间相互作用的显著影响。随着温度升高,结构无序扩展到第二个水双层。在比Tm低约5 K的温度下,可以估计预熔水层的厚度为6 - 8 Å。温度升高导致冰Ih界面非线性光谱的强度和形状发生变化。这些变化可以通过不同氢键表面物种之间的相互转化以及水分子无序度的增加来解释,水分子无序度的增加会降低分子间相互作用的强度。本工作的结果有助于我们理解冰/空气界面的结构 - 光谱关系,并揭示该系统非线性光谱特征的起源。