Suppr超能文献

使用人工神经网络进行再生颗粒识别:聚丙烯基复合材料

Use of Artificial Neural Networks for Recycled Pellets Identification: Polypropylene-Based Composites.

作者信息

Gómez-Bacab Maya T, Quezada-Campos Aldo L, Patiño-Arévalo Carlos D, Zepeda-Rodríguez Zenen, Romero-Cano Luis A, Zárate-Navarro Marco A

机构信息

Laboratorio de Ingeniería Química, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan CP. 45129, Jalisco, Mexico.

Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan CP. 45129, Jalisco, Mexico.

出版信息

Polymers (Basel). 2025 Aug 29;17(17):2349. doi: 10.3390/polym17172349.

Abstract

Polymer recycling is challenging due to practical classification difficulties. Even when the polymer matrix is identified, the presence of various polymeric composites complicates their accurate classification. In this study, Fourier-transform infrared spectroscopy (ATR-FTIR) was used in combination with artificial neural networks (ANNs) to quantitatively predict the mineral filler content in polypropylene (PP) composites. Calibration curves were developed to correlate ATR-FTIR spectral features (600-1700 cm) with the concentration (wt.%) of three mineral fillers: talc (PP-Talc), calcium carbonate (PP-CaCO), and glass fiber (PP-GF). ANN models developed in MATLAB 2024a achieved prediction errors below 7.5% and regression coefficients (R) above 0.98 for all filler types. The method was successfully applied to analyze a commercial recycled pellet, and its predictions were validated by X-ray fluorescence (XRF) and energy-dispersive X-ray spectroscopy (EDX). This approach provides a simple, rapid, and non-destructive tool for non-expert users to identify both the type and amount of mineral filler in recycled polymer materials, thereby reducing misclassification in their commercialization or quality control in industrial formulations.

摘要

由于实际分类困难,聚合物回收具有挑战性。即使确定了聚合物基体,各种聚合物复合材料的存在也会使它们的准确分类变得复杂。在本研究中,傅里叶变换红外光谱(ATR-FTIR)与人工神经网络(ANNs)结合使用,以定量预测聚丙烯(PP)复合材料中的矿物填料含量。绘制了校准曲线,将ATR-FTIR光谱特征(600-1700 cm)与三种矿物填料的浓度(重量%)相关联:滑石粉(PP-滑石粉)、碳酸钙(PP-CaCO)和玻璃纤维(PP-GF)。在MATLAB 2024a中开发的ANN模型对所有填料类型的预测误差均低于7.5%,回归系数(R)均高于0.98。该方法成功应用于分析一种商业回收颗粒,其预测结果通过X射线荧光(XRF)和能量色散X射线光谱(EDX)进行了验证。这种方法为非专业用户提供了一种简单、快速且无损的工具,用于识别回收聚合物材料中矿物填料的类型和数量,从而减少其商业化过程中的错误分类或工业配方中的质量控制问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3116/12431023/66501b5a34fd/polymers-17-02349-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验