Seifert Lukas, Leuchtenberger-Engel Lisa, Hopmann Christian
Institute for Plastics Processing (IKV) in Industry and Craft at RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany.
Polymers (Basel). 2024 Dec 3;16(23):3403. doi: 10.3390/polym16233403.
The extensive use of polypropylene (PP) in various industries necessitates the development of efficient and reliable methods for predicting the mechanical properties of PP compounds. This study presents the development of an analytical model (AM) designed to predict the tensile modulus for a dataset of 64 PP compounds with various fillers and additives, including chalk, impact strength modifiers, and peroxide additives. The AM, incorporating both logarithmic and linear components, was benchmarked against an artificial neural network (ANN) to evaluate its performance. The results demonstrate that the AM consistently outperforms the ANN, achieving lower mean absolute error (MAE) and higher coefficient of determination (R) values. A maximum R of 0.98 could be achieved in predicting the tensile modulus. The simplicity and robustness of the AM with its 14 fitting parameters compared to the ~1300 parameters of the ANN make it a useful tool for the plastics industry, providing a practical approach to optimising compound formulations with minimal empirical testing.
聚丙烯(PP)在各个行业的广泛应用使得开发高效且可靠的方法来预测PP复合材料的机械性能成为必要。本研究展示了一种分析模型(AM)的开发,该模型旨在预测包含白垩、抗冲改性剂和过氧化物添加剂等各种填料和添加剂的64种PP复合材料数据集的拉伸模量。结合对数和线性成分的AM与人工神经网络(ANN)进行了对比,以评估其性能。结果表明,AM始终优于ANN,实现了更低的平均绝对误差(MAE)和更高的决定系数(R)值。在预测拉伸模量时,最大R值可达0.98。与具有约1300个参数的ANN相比,具有14个拟合参数的AM的简单性和稳健性使其成为塑料行业的有用工具,为通过最少的经验测试优化复合材料配方提供了一种实用方法。