Suppr超能文献

用于水电解整体效率的CoMoCe氧化物纳米结构复合材料作为稳健双功能电催化剂的设计

Design of CoMoCe-Oxide Nanostructured Composites as Robust Bifunctional Electrocatalyst for Water Electrolysis Overall Efficiency.

作者信息

Inamdar Akbar I, Salunke Amol S, Patil Jyoti V, Mali Sawanta S, Hong Chang Kook, Ali Basit, Patil Supriya A, Shrestha Nabeen K, Lee Sejoon, Cho Sangeun

机构信息

Division of System Semiconductor, Dongguk University, Seoul 04620, Republic of Korea.

Department of Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.

出版信息

Materials (Basel). 2025 Aug 29;18(17):4052. doi: 10.3390/ma18174052.

Abstract

The development of ternary metal oxide electrocatalysts with optimized electronic structures and surface morphologies has emerged as one of the effective strategies to improve the performance of electrochemical water splitting. In this work, ternary CoMoCe (CMC)-oxide electrocatalysts were successfully synthesized on nickel foam substrates via a hydrothermal technique and employed for their catalytic activity in an alkaline electrolyte. For comparison, binary counterparts (CoMo, CoCe, and MoCe) were also fabricated under similar conditions. The synthesized catalysts' electrodes exhibited diverse surface architectures, including microporous-flake hybrids, ultrathin flakes, nanoneedle-assembled microspheres, and randomly oriented hexagonal structures. Among them, the ternary CoMoCe-oxide electrode exhibited outstanding bifunctional electrocatalytic activity, delivering low overpotentials of 124 mV for the hydrogen evolution reaction (HER) at -10 mA cm, and 340 mV for the oxygen evolution reaction (OER) at 100 mA cm, along with excellent durability. Furthermore, in full water-splitting configuration, the CMC||CMC and RuO||CMC electrolyzers required cell voltages of 1.69 V and 1.57 V, respectively, to reach a current density of 10 mA cm. Remarkably, the CMC-based electrolyzer reached an industrially relevant current density of 1000 mA cm at a cell voltage of 2.18 V, maintaining excellent stability over 100 h of continuous operation. These findings underscore the impact of an optimized electronic structure and surface architecture on design strategies for high-performance ternary metal oxide electrocatalysts. Herein, a robust and straightforward approach is comprehensively presented for fabricating highly efficient ternary metal-oxide catalyst electrodes, offering significant potential for scalable water splitting.

摘要

开发具有优化电子结构和表面形态的三元金属氧化物电催化剂,已成为提高电化学水分解性能的有效策略之一。在这项工作中,通过水热技术在泡沫镍基底上成功合成了三元CoMoCe(CMC)氧化物电催化剂,并将其用于碱性电解质中的催化活性研究。为作比较,还在相似条件下制备了二元对应物(CoMo、CoCe和MoCe)。合成催化剂的电极呈现出多样的表面结构,包括微孔片状混合物、超薄片状、纳米针组装微球和随机取向的六边形结构。其中,三元CoMoCe氧化物电极表现出出色的双功能电催化活性,在-10 mA cm时析氢反应(HER)的过电位低至124 mV,在100 mA cm时析氧反应(OER)的过电位为340 mV,且具有出色的耐久性。此外,在全水分解配置中,CMC||CMC和RuO||CMC电解槽分别需要1.69 V和1.57 V的电池电压才能达到10 mA cm的电流密度。值得注意的是,基于CMC的电解槽在2.18 V的电池电压下达到了1000 mA cm的工业相关电流密度,在连续运行100 h以上保持了出色的稳定性。这些发现强调了优化电子结构和表面结构对高性能三元金属氧化物电催化剂设计策略的影响。本文全面介绍了一种稳健且直接的方法来制备高效的三元金属氧化物催化剂电极,为可扩展的水分解提供了巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a70/12428978/c1fccd66941d/materials-18-04052-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验