Department of Chemical Sciences, University of Padova , via Marzolo 1, Padua 35131, Italy.
Advanced Light Source (ALS) Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory , 1 Cyclotron Rd., M/S 6R2100 Berkeley, California 94720, United States.
ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25685-92. doi: 10.1021/acsami.5b06668. Epub 2015 Nov 10.
Aerosol processing enables the preparation of hierarchical graphene nanocomposites with special crumpled morphology in high yield and in a short time. Using modular insertion of suitable precursors in the starting solution, it is possible to synthesize different types of graphene-based materials ranging from heteroatom-doped graphene nanoballs to hierarchical nanohybrids made up by nitrogen-doped crumpled graphene nanosacks that wrap finely dispersed MoS2 nanoparticles. These materials are carefully investigated by microscopic (SEM, standard and HR TEM), diffraction (grazing incidence X-ray diffraction (GIXRD)) and spectroscopic (high resolution photoemission, Raman and UV-visible spectroscopy) techniques, evidencing that nitrogen dopants provide anchoring sites for MoS2 nanoparticles, whereas crumpling of graphene sheets drastically limits aggregation. The activity of these materials is tested toward the photoelectrochemical production of hydrogen, obtaining that N-doped graphene/MoS2 nanohybrids are seven times more efficient with respect to single MoS2 because of the formation of local p-n MoS2/N-doped graphene nanojunctions, which allow an efficient charge carrier separation.
气溶胶处理能够以高产率和短时间制备具有特殊皱缩形态的分级石墨烯纳米复合材料。通过在起始溶液中模块化插入合适的前体,可以合成不同类型的基于石墨烯的材料,从杂原子掺杂的石墨烯纳米球到由氮掺杂的皱缩石墨烯纳米袋组成的分级纳米杂化物,这些纳米袋包裹着分散良好的 MoS2 纳米颗粒。这些材料通过微观(SEM、标准和高分辨率 TEM)、衍射(掠入射 X 射线衍射(GIXRD))和光谱(高分辨率光发射、拉曼和紫外可见光谱)技术进行了仔细研究,证明氮掺杂剂为 MoS2 纳米颗粒提供了锚固位点,而石墨烯片的皱缩则极大地限制了聚集。这些材料的活性通过光电化学制氢进行了测试,结果表明,与单 MoS2 相比,N 掺杂石墨烯/MoS2 纳米杂化物的效率高 7 倍,这是由于形成了局部 p-n MoS2/N 掺杂石墨烯纳米结,这允许有效的载流子分离。