Suppr超能文献

使用可穿戴惯性节点在开放水域进行实时划水动作分类与无线监测。

Real-Time Paddle Stroke Classification and Wireless Monitoring in Open Water Using Wearable Inertial Nodes.

作者信息

Dobra Vladut-Alexandru, Dobra Ionut-Marian, Folea Silviu

机构信息

Faculty of Automatic Control and Computer Science, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.

出版信息

Sensors (Basel). 2025 Aug 26;25(17):5307. doi: 10.3390/s25175307.

Abstract

This study presents a low-cost wearable system for monitoring and classifying paddle strokes in open-water environments. Building upon our previous work in controlled aquatic and dryland settings, the proposed system consists of ESP32-based embedded nodes equipped with MPU6050 accelerometer-gyroscope sensors. These nodes communicate via the ESP-NOW protocol in a master-slave architecture. With minimal hardware modifications, the system implements gesture classification using Dynamic Time Warping (DTW) to distinguish between left and right paddle strokes. The collected data, including stroke type, count, and motion similarity, are transmitted in real time to a local interface for visualization. Field experiments were conducted on a calm lake using a paddleboard, where users performed a series of alternating strokes. In addition to gesture recognition, the study includes empirical testing of ESP-NOW communication range in the open lake environment. The results demonstrate reliable wireless communication over distances exceeding 100 m with minimal packet loss, confirming the suitability of ESP-NOW for low-latency data transfer in open-water conditions. The system achieved over 80% accuracy in stroke classification and sustained more than 3 h of operational battery life. This approach demonstrates the feasibility of real-time, wearable-based motion tracking for water sports in natural environments, with potential applications in kayaking, rowing, and aquatic training systems.

摘要

本研究提出了一种低成本的可穿戴系统,用于在开放水域环境中监测和分类划桨动作。基于我们之前在受控水上和旱地环境中的工作,所提出的系统由配备MPU6050加速度计-陀螺仪传感器的基于ESP32的嵌入式节点组成。这些节点通过ESP-NOW协议在主从架构中进行通信。通过最少的硬件修改,该系统使用动态时间规整(DTW)实现手势分类,以区分左右划桨动作。收集到的数据,包括划桨类型、次数和动作相似度,实时传输到本地接口进行可视化。在平静的湖泊上使用桨板进行了实地实验,用户在实验中进行了一系列交替划桨动作。除了手势识别,该研究还包括在开放湖泊环境中对ESP-NOW通信范围的实证测试。结果表明,在超过100米的距离上实现了可靠的无线通信,丢包率极低,证实了ESP-NOW在开放水域条件下进行低延迟数据传输的适用性。该系统在划桨动作分类方面的准确率超过80%,并且电池续航时间超过3小时。这种方法证明了在自然环境中对水上运动进行基于可穿戴设备的实时运动跟踪的可行性,在皮划艇、赛艇和水上训练系统中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4298/12431577/fdf31b951adc/sensors-25-05307-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验