Alupoaei Sebastian-Ioan, Caruntu Constantin-Florin
Department of Automatic Control and Applied Informatics, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania.
Sensors (Basel). 2025 Sep 2;25(17):5418. doi: 10.3390/s25175418.
Urban growth and rising vehicle usage have intensified congestion, accidents, and environmental impact, exposing the limitations of traditional traffic management systems. This study introduces a dual-incident simulation framework to investigate the potential of Vehicle-to-Everything (V2X) technologies in enhancing urban mobility. Using the Eclipse MOSAIC platform integrated with SUMO, a realistic network in Iași, Romania, was modeled under single- and dual-incident scenarios with three V2X penetration levels: 0%, 50%, and 100%. Unlike prior works that focus on single-incident cases or assume full penetration, our approach evaluates cascading disruptions under partial adoption, providing a more realistic transition path for mid-sized European cities. Key performance indicators, i.e., average speed, vehicle density, time loss, and waiting time, were calculated using mathematically defined formulas and validated across multiple simulation runs. Results demonstrate that full V2X deployment reduces average time loss by 18% and peak density by more than 70% compared to baseline conditions, while partial adoption delivers measurable yet limited benefits. The dual-incident scenario shows that V2X-enabled rerouting significantly mitigates cascading congestion effects. These contributions advance the state of the art by bridging microscopic vehicle dynamics with network-level communication modeling, offering quantitative insights for phased V2X implementation and the design of resilient, sustainable intelligent transportation systems.
城市增长和车辆使用量的增加加剧了拥堵、事故和环境影响,暴露出传统交通管理系统的局限性。本研究引入了一个双事件模拟框架,以研究车联网(V2X)技术在提升城市交通流动性方面的潜力。利用与SUMO集成的Eclipse MOSAIC平台,在罗马尼亚雅西的一个真实网络上,针对单事件和双事件场景,以三种V2X渗透率水平(0%、50%和100%)进行建模。与之前专注于单事件案例或假设完全渗透的研究不同,我们的方法评估了部分采用情况下的级联干扰,为欧洲中型城市提供了一条更现实的过渡路径。关键性能指标,即平均速度、车辆密度、时间损失和等待时间,通过数学定义的公式计算得出,并在多次模拟运行中进行了验证。结果表明,与基线条件相比,全面部署V2X可将平均时间损失降低18%,将峰值密度降低70%以上,而部分采用则带来了可衡量但有限的效益。双事件场景表明,启用V2X的重新路由显著减轻了级联拥堵效应。这些贡献通过将微观车辆动力学与网络级通信建模相结合,推动了技术发展,为分阶段实施V2X以及设计弹性、可持续的智能交通系统提供了定量见解。