Suppr超能文献

基于数据融合与XGBoost-SHAP方法的5G信号路径损耗预测模型

Path Loss Prediction Model of 5G Signal Based on Fusing Data and XGBoost-SHAP Method.

作者信息

Xu Tingting, Xu Nuo, Gao Jay, Zhou Yadong, Ma Haoran

机构信息

School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

出版信息

Sensors (Basel). 2025 Sep 2;25(17):5440. doi: 10.3390/s25175440.

Abstract

The accurate prediction of path loss is essential for planning and optimizing communication networks, as it directly impacts the user experience. In 5G signal propagation, the mix of varied terrain and dense high-rise buildings poses significant challenges. For example, signals are more prone to multipath effects and occlusion and shadowing occur often, leading to high nonlinearities and uncertainties in the signal path. Traditional and shallow models often fail to accurately depict 5G signal characteristics in complex terrains, limiting the accuracy of path loss modeling. To address this issue, our research introduces innovative feature engineering and prediction models for 5G signals. By utilizing smartphones as signal receivers and creating a multimodal system that captures 3D structures and obstructions in the N1 and N78 bands in China, the study aimed to overcome the shortcomings of traditional linear models, especially in mountainous areas. It employed the XGBoost algorithm with Optuna for hyperparameter tuning, improving model performance. After training on real 5G data, the model achieved a breakthrough in 5G signal path loss prediction, with an R of 0.76 and an RMSE of 3.81 dBm. Additionally, SHAP values were employed to interpret the results, revealing the relative impact of various environmental features on 5G signal path loss. This research enhances the accuracy and stability of predictions and offers a technical framework and theoretical foundation for planning and optimizing wireless communication networks in complex environments and terrains.

摘要

准确预测路径损耗对于通信网络的规划和优化至关重要,因为它直接影响用户体验。在5G信号传播中,多样的地形和密集的高层建筑带来了重大挑战。例如,信号更容易受到多径效应的影响,遮挡和阴影现象频繁发生,导致信号路径中存在高度的非线性和不确定性。传统的浅层模型往往无法准确描述复杂地形中的5G信号特征,限制了路径损耗建模的准确性。为了解决这个问题,我们的研究引入了针对5G信号的创新特征工程和预测模型。通过将智能手机用作信号接收器,并创建一个多模态系统来捕捉中国N1和N78频段中的3D结构和障碍物,该研究旨在克服传统线性模型的缺点,尤其是在山区。它采用了带有Optuna的XGBoost算法进行超参数调整,提高了模型性能。在对真实5G数据进行训练后,该模型在5G信号路径损耗预测方面取得了突破,R值为0.76,均方根误差为3.81 dBm。此外,还使用SHAP值来解释结果,揭示各种环境特征对5G信号路径损耗的相对影响。这项研究提高了预测的准确性和稳定性,并为复杂环境和地形中的无线通信网络规划和优化提供了技术框架和理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/884f/12430998/0929f6a12bcc/sensors-25-05440-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验