Soumoy Laura, Genbauffe Aline, Sant'Angelo Dorianne, Everaert Maude, Mukeba-Harchies Léa, Sarry Jean-Emmanuel, Declèves Anne-Emilie, Journe Fabrice
Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine, Pharmacy and Biomedical Sciences, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium.
INSERM U981, Gustave Roussy Cancer Campus, 94800 Villejuif, France.
Int J Mol Sci. 2025 Aug 25;26(17):8241. doi: 10.3390/ijms26178241.
Targeted therapy with BRAFi has significantly improved outcomes for patients with BRAF-mutated metastatic melanoma. However, resistance mechanisms, particularly metabolic adaptations, such as increased glutaminolysis, present substantial clinical challenges. This study investigated the metabolic changes underlying BRAFi resistance in melanoma cells. Using pharmacological agents, including dabrafenib (BRAFi), pimasertib (MEKi), dasatinib (cKITi), and CB-839 (glutaminase inhibitor), we explored metabolic adaptations in melanoma cell lines harboring various mutations. Our methodologies included cell culture, qPCR, polysome profiling, animal studies in nude mice, and analyses of patient samples to evaluate the therapeutic potential of targeting glutaminolysis. Our findings confirmed that melanoma cells, with resistance to targeted therapies, exhibit metabolic adaptations, including enhanced glutaminolysis, increased mitochondrial content, and elevated antioxidative capacities. We evaluated the efficacy of CB-839 and demonstrated its ability to reduce the proliferation of resistant melanoma cells both in vitro and in vivo. Mechanistic studies revealed that CB-839 suppressed ATP production and TCA cycle intermediates in resistant cells while inducing oxidative stress in sensitive cells, thereby inhibiting their proliferation. High glutaminase expression in primary patient tumor samples was associated with poor prognosis. We identified a metabolic signature in tumors from patients responsive or unresponsive to BRAFi prior to treatment, which could serve as a predictive factor for BRAFi response. This study underscores the metabolic alterations driving resistance to BRAFi in melanoma cells and highlights the therapeutic potential of targeting glutaminolysis with CB-839. The identification of metabolic signatures in patient samples provides valuable insights for personalized treatment strategies, aiming to overcome resistance mechanisms and improve patient outcomes in melanoma management.
使用BRAF抑制剂进行靶向治疗已显著改善了BRAF突变转移性黑色素瘤患者的治疗效果。然而,耐药机制,特别是代谢适应性变化,如谷氨酰胺分解增加,带来了重大的临床挑战。本研究调查了黑色素瘤细胞中BRAF抑制剂耐药背后的代谢变化。我们使用了包括达拉非尼(BRAF抑制剂)、匹美替尼(MEK抑制剂)、达沙替尼(cKIT抑制剂)和CB-839(谷氨酰胺酶抑制剂)在内的药物制剂,探索了携带各种突变的黑色素瘤细胞系中的代谢适应性变化。我们的方法包括细胞培养、qPCR、多核糖体分析、裸鼠动物研究以及对患者样本的分析,以评估靶向谷氨酰胺分解的治疗潜力。我们的研究结果证实,对靶向治疗耐药的黑色素瘤细胞表现出代谢适应性变化,包括增强的谷氨酰胺分解、增加的线粒体含量和提高的抗氧化能力。我们评估了CB-839的疗效,并证明其在体外和体内均能降低耐药黑色素瘤细胞的增殖。机制研究表明,CB-839抑制耐药细胞中的ATP生成和三羧酸循环中间体,同时在敏感细胞中诱导氧化应激,从而抑制其增殖。原发性患者肿瘤样本中谷氨酰胺酶的高表达与预后不良相关。我们在治疗前对BRAF抑制剂有反应或无反应的患者肿瘤中确定了一种代谢特征,可作为BRAF抑制剂反应的预测因素。本研究强调了驱动黑色素瘤细胞对BRAF抑制剂耐药的代谢改变,并突出了用CB-839靶向谷氨酰胺分解的治疗潜力。在患者样本中识别代谢特征为个性化治疗策略提供了有价值的见解,旨在克服耐药机制并改善黑色素瘤治疗中的患者预后。