Suppr超能文献

水与致病病毒的灭活——食品工程视角

Water and Pathogenic Viruses Inactivation-Food Engineering Perspectives.

作者信息

Roos Yrjö H

机构信息

School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.

出版信息

Food Eng Rev. 2020;12(3):251-267. doi: 10.1007/s12393-020-09234-z. Epub 2020 Jun 20.

Abstract

Water is an essential component of food structures and biological materials. The importance of water as a parameter affecting virion stability and inactivation has been recognized across disciplinary areas. The large number of virus species, differences in spreading, likelihood of foodborne infections, unknown infective doses, and difficulties of infective virus quantification are often limiting experimental approaches to establish accurate data required for detailed understanding of virions' stability and inactivation kinetics in various foods. Furthermore, non-foodborne viruses, as shown by the SARS-CoV-2 (Covid-19) pandemic, may spread within the food chain. Traditional food engineering benefits from kinetic data on effects of relative humidity (RH) and temperature on virion inactivation. The stability of enteric viruses, human norovirus (HuNoV), and hepatitis A (HAV) virions in food materials and their resistance against inactivation in traditional food processing and preservation is well recognized. It appears that temperature-dependence of virus inactivation is less affected by virus strains than differences in temperature and RH sensitivity of individual virus species. Pathogenic viruses are stable at low temperatures typical of food storage conditions. A significant change in activation energy above typical protein denaturation temperatures suggests a rapid inactivation of virions. Furthermore, virus inactivation mechanisms seem to vary according to temperature. Although little is known on the effects of water on virions' resistance during food processing and storage, dehydration, low RH conditions, and freezing stabilize virions. Enveloped virions tend to have a high stability at low RH, but low temperature and high RH may also stabilize such virions on metal and other surfaces for several days. Food engineering has contributed to significant developments in stabilization of nutrients, flavors, and sensitive components in food materials which provides a knowledge base for development of technologies to inactivate virions in foods and environment. Novel food processing, particularly high pressure processing (HPP) and cold plasma technologies, seem to provide efficient means for virion inactivation and food quality retention prior to packaging or food preservation by traditional technologies.

摘要

水是食物结构和生物材料的重要组成部分。水作为影响病毒粒子稳定性和失活的一个参数,其重要性已在各学科领域得到认可。大量的病毒种类、传播差异、食源性感染的可能性、未知的感染剂量以及感染性病毒定量的困难,常常限制了实验方法,难以获得详细了解病毒粒子在各种食物中的稳定性和失活动力学所需的准确数据。此外,如严重急性呼吸综合征冠状病毒2(SARS-CoV-2,即新冠病毒)大流行所示,非食源性病毒可能在食物链中传播。传统食品工程受益于相对湿度(RH)和温度对病毒粒子失活影响的动力学数据。肠道病毒、人类诺如病毒(HuNoV)和甲型肝炎病毒(HAV)病毒粒子在食品原料中的稳定性及其在传统食品加工和保存过程中的抗失活能力已得到充分认识。看来,病毒失活的温度依赖性受病毒株的影响小于单个病毒种类在温度和RH敏感性方面的差异。致病病毒在典型的食品储存低温条件下是稳定的。高于典型蛋白质变性温度时活化能的显著变化表明病毒粒子快速失活。此外,病毒失活机制似乎随温度而变化。尽管对于食品加工和储存过程中水对病毒粒子抗性的影响知之甚少,但脱水、低RH条件和冷冻可使病毒粒子稳定。包膜病毒粒子在低RH下往往具有较高的稳定性,但低温和高RH也可能使此类病毒粒子在金属和其他表面上稳定存在数天。食品工程在食品原料中营养成分、风味和敏感成分的稳定化方面取得了重大进展,这为开发食品和环境中病毒粒子失活技术提供了知识基础。新型食品加工,特别是高压处理(HPP)和冷等离子体技术,似乎为在包装或采用传统技术进行食品保存之前使病毒粒子失活并保持食品质量提供了有效手段。

相似文献

1
Water and Pathogenic Viruses Inactivation-Food Engineering Perspectives.
Food Eng Rev. 2020;12(3):251-267. doi: 10.1007/s12393-020-09234-z. Epub 2020 Jun 20.
2
Inactivation of Foodborne Viruses by High-Pressure Processing (HPP).
Foods. 2021 Jan 21;10(2):215. doi: 10.3390/foods10020215.
3
High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods.
Annu Rev Food Sci Technol. 2015;6:389-409. doi: 10.1146/annurev-food-072514-104609.
4
Survival and Inactivation by Advanced Oxidative Process of Foodborne Viruses in Model Low-Moisture Foods.
Food Environ Virol. 2021 Mar;13(1):107-116. doi: 10.1007/s12560-020-09457-7. Epub 2021 Jan 27.
5
Heat stability of foodborne viruses - Findings, methodological challenges and current developments.
Int J Food Microbiol. 2024 Mar 2;413:110582. doi: 10.1016/j.ijfoodmicro.2024.110582. Epub 2024 Jan 25.
6
High pressure processing and its application to the challenge of virus-contaminated foods.
Food Environ Virol. 2013 Mar;5(1):1-12. doi: 10.1007/s12560-012-9094-9. Epub 2012 Nov 20.
7
Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses.
Appl Environ Microbiol. 2016 Sep 16;82(19):6037-45. doi: 10.1128/AEM.01575-16. Print 2016 Oct 1.
8
Effect of temperature and relative humidity on the survival of foodborne viruses during food storage.
Appl Environ Microbiol. 2015 Mar;81(6):2075-81. doi: 10.1128/AEM.04093-14. Epub 2015 Jan 9.
9
Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces.
Environ Sci Technol. 2012 Dec 18;46(24):13303-10. doi: 10.1021/es3032105. Epub 2012 Dec 3.
10
SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges.
Chem Eng J. 2021 Feb 1;405:126893. doi: 10.1016/j.cej.2020.126893. Epub 2020 Sep 4.

引用本文的文献

1
Determining the burden of foodborne hepatitis A spread by food handlers: suggestions for a targeted vaccination?
Front Public Health. 2025 Jun 25;13:1617004. doi: 10.3389/fpubh.2025.1617004. eCollection 2025.

本文引用的文献

1
The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks.
Nat Microbiol. 2020 May;5(5):668-674. doi: 10.1038/s41564-020-0709-x. Epub 2020 Apr 27.
2
The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis.
Foods. 2020 Apr 22;9(4):523. doi: 10.3390/foods9040523.
3
Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks.
ACS Nano. 2020 May 26;14(5):6339-6347. doi: 10.1021/acsnano.0c03252. Epub 2020 Apr 24.
4
Fate of Foodborne Viruses in the "Farm to Fork" Chain of Fresh Produce.
Compr Rev Food Sci Food Saf. 2015 Nov;14(6):755-770. doi: 10.1111/1541-4337.12163. Epub 2015 Oct 8.
5
A rate equation approach to model the denaturation or replication behavior of the SARS coronavirus.
Forsch Ingenieurwes. 2004;68(4):227-238. doi: 10.1007/s10010-004-0130-2.
6
Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1.
N Engl J Med. 2020 Apr 16;382(16):1564-1567. doi: 10.1056/NEJMc2004973. Epub 2020 Mar 17.
7
First respiratory transmitted food borne outbreak?
Int J Hyg Environ Health. 2020 May;226:113490. doi: 10.1016/j.ijheh.2020.113490. Epub 2020 Feb 20.
8
Humidity-Dependent Decay of Viruses, but Not Bacteria, in Aerosols and Droplets Follows Disinfection Kinetics.
Environ Sci Technol. 2020 Jan 21;54(2):1024-1032. doi: 10.1021/acs.est.9b04959. Epub 2020 Jan 10.
9
Progress in the study of virus detection methods: The possibility of alternative methods to validate virus inactivation.
Biotechnol Bioeng. 2019 Aug;116(8):2095-2102. doi: 10.1002/bit.27003. Epub 2019 May 30.
10
Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence.
J R Soc Interface. 2019 Jan 31;16(150):20180298. doi: 10.1098/rsif.2018.0298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验