Shoshani Liora, Sosa Huerta Christian, Roldán María Luisa, Ponce Arturo, Martínez-Archundia Marlet
Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico.
Int J Mol Sci. 2025 Sep 8;26(17):8744. doi: 10.3390/ijms26178744.
AMOG/β, the β isoform of the sodium pump (Na/K-ATPase), functions as an adhesion molecule on glial cells, mediating critical neuron-astrocyte interactions during central nervous system (CNS) development. Despite its established role in glial adhesion, the neuronal receptor that partners with AMOG/β remains unknown. This review examines the structural and functional properties of AMOG/β, including its capacity to form trans-dimers, both homophilic and potentially heterophilic-drawing comparisons with the β subunit, a well-characterized adhesion molecule. By integrating computational modeling, in vitro data, and structural predictions, we explore how factors such as N-glycosylation and cis-membrane interactions influence β-mediated adhesion. We further consider candidate neuronal partners, including TSPAN31 and RTN4, and speculate on their potential roles in mediating heterophilic AMOG/β interactions. Finally, we discuss the broader implications of AMOG/β in neuron-glia communication, synaptic organization, neurodevelopment, and CNS disorders such as glioblastoma. Identifying the binding partner of AMOG/β holds promise not only for understanding the molecular basis of CNS adhesion but also for uncovering novel mechanisms of neuroglial regulation in health and disease.
钠泵(Na/K - ATP酶)的β亚型AMOG/β在神经胶质细胞上作为一种粘附分子发挥作用,在中枢神经系统(CNS)发育过程中介导关键的神经元 - 星形胶质细胞相互作用。尽管其在神经胶质粘附方面的作用已得到确立,但与AMOG/β相互作用的神经元受体仍然未知。本综述探讨了AMOG/β的结构和功能特性,包括其形成反式二聚体的能力,既有同嗜性的,也可能有异嗜性的——并与β亚基进行比较,β亚基是一种特征明确的粘附分子。通过整合计算模型、体外数据和结构预测,我们探究了诸如N - 糖基化和顺式膜相互作用等因素如何影响β介导的粘附。我们进一步考虑了候选神经元伙伴,包括TSPAN31和RTN4,并推测它们在介导异嗜性AMOG/β相互作用中的潜在作用。最后,我们讨论了AMOG/β在神经元 - 神经胶质细胞通讯、突触组织、神经发育以及诸如胶质母细胞瘤等CNS疾病中的更广泛意义。确定AMOG/β的结合伙伴不仅有望理解CNS粘附的分子基础,还能揭示健康和疾病状态下神经胶质调节的新机制。