Regvar Marjana, Bočaj Valentina, Mravlje Jure, Pelko Teja, Likar Matevž, Pongrac Paula, Vogel-Mikuš Katarina
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
Int J Mol Sci. 2025 Sep 8;26(17):8748. doi: 10.3390/ijms26178748.
species (formerly ) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and genetic responses to metal stress are relatively well characterised, the extent to which these traits influence microbiome composition and function remains largely unexplored. These species possess compact genomes shaped by ancient whole-genome duplications and rearrangements, and such genomic traits may influence microbial recruitment through changes in secondary metabolism, elemental composition, and tissue architecture. Here, we synthesise the current findings on how genome size, metal hyperaccumulation, structural adaptations, and glucosinolate diversity affect microbial communities in roots and leaves. We review evidence from bioimaging, molecular profiling, and physiological studies, highlighting interactions with bacteria and fungi adapted to metalliferous soils. At present, the leaf microbiome of species remains underexplored. Analyses of root microbiome, however, reveal a consistent taxonomic core dominated by Actinobacteria and Proteobacteria among bacterial communities and Ascomycetes, predominantly Dothideomycetes and Leotiomycetes among fungi. Collectively, these findings suggest that metal-adapted microbes provide several plant-beneficial functions, including metal detoxification, nutrient cycling, growth promotion, and enhanced metal extraction in association with dark septate endophytes. By contrast, the status of mycorrhizal associations in remains debated and unresolved, although evidence points to functional colonisation by selected fungal taxa. These insights indicate that multiple plant traits interact to shape microbiome assembly and activity in species. Understanding these dynamics offers new perspectives on plant-microbe co-adaptation, ecological resilience, and the optimisation of microbiome-assisted strategies for sustainable phytoremediation.
(以前的)某些物种是十字花科植物,以其超积累锌(Zn)、镉(Cd)和镍(Ni)的能力而闻名,这使它们成为金属耐受性、植物修复以及植物对极端环境适应性研究中的模式系统。虽然它们对金属胁迫的生理和遗传反应已得到较好的表征,但这些特性对微生物群落组成和功能的影响程度在很大程度上仍未被探索。这些物种拥有由古老的全基因组复制和重排塑造的紧凑基因组,并且这种基因组特性可能通过次生代谢、元素组成和组织结构的变化影响微生物的招募。在这里,我们综合了关于基因组大小、金属超积累、结构适应性和硫代葡萄糖苷多样性如何影响根和叶中微生物群落的当前研究结果。我们回顾了来自生物成像、分子谱分析和生理学研究的证据,强调了与适应金属土壤的细菌和真菌的相互作用。目前,某些物种的叶微生物群落仍未得到充分研究。然而,对根微生物群落的分析揭示了一个一致的分类学核心,细菌群落中以放线菌和变形菌为主,真菌中以子囊菌为主,主要是座囊菌纲和柔膜菌纲。总的来说,这些发现表明适应金属的微生物提供了几种对植物有益的功能,包括金属解毒、养分循环、促进生长以及与深色有隔内生菌相关的增强金属提取。相比之下,尽管有证据表明某些真菌类群进行了功能性定殖,但某些物种中菌根共生的状况仍存在争议且未得到解决。这些见解表明多种植物特性相互作用以塑造某些物种中微生物群落的组装和活性。理解这些动态为植物 - 微生物共同适应、生态恢复力以及优化微生物辅助的可持续植物修复策略提供了新的视角。