Suppr超能文献

内在无序区域中结合残基预测的比较评估

Comparative assessment of binding residue predictions in intrinsically disordered regions.

作者信息

Basu Sushmita, Kurgan Lukasz

机构信息

Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Protein Sci. 2025 Oct;34(10):e70298. doi: 10.1002/pro.70298.

Abstract

Dozens of impactful methods that predict intrinsically disordered regions (IDRs) in protein sequences that interact with proteins and/or nucleic acids were developed. Their training and assessment rely on the IDR-level binding annotations, while the equivalent structure-trained methods predict more granular annotations of binding amino acids (AA). We compiled a new benchmark dataset that annotates binding AA in IDRs and applied it to complete a first-of-its-kind assessment of predictions of the disordered binding residues. We evaluated a representative collection of 14 methods, used several hundred low-similarity test proteins, and focused on the challenging task of differentiating these binding residues from other disordered AA and considering ligand type-specific predictions (protein-protein vs. protein-nucleic acid interactions). We found that current methods struggle to accurately predict binding IDRs among disordered residues; however, better-than-random tools predict disordered binding residues significantly better than binding IDRs. We identified at least one relatively accurate tool for predicting disordered protein-binding and disordered nucleic acid-binding AA. Analysis of cross-predictions between interactions with protein and nucleic acids revealed that most methods are ligand-type-agnostic. Only two predictors of the nucleic acid-binding IDRs and two predictors of the protein-binding IDRs can be considered as ligand-type-specific. We also discussed several potential future directions that would move this field forward by producing more accurate methods that target the prediction of binding residues, reduce cross-predictions, and cover a broader range of ligand types.

摘要

人们开发了数十种有影响力的方法,用于预测与蛋白质和/或核酸相互作用的蛋白质序列中的内在无序区域(IDR)。它们的训练和评估依赖于IDR水平的结合注释,而等效的基于结构训练的方法则预测结合氨基酸(AA)的更精细注释。我们编制了一个新的基准数据集,对IDR中的结合AA进行注释,并将其用于对无序结合残基预测进行首次此类评估。我们评估了14种具有代表性的方法,使用了数百种低相似性测试蛋白,并专注于将这些结合残基与其他无序AA区分开来以及考虑配体类型特异性预测(蛋白质-蛋白质相互作用与蛋白质-核酸相互作用)这一具有挑战性的任务。我们发现,当前的方法难以准确预测无序残基中的结合IDR;然而,比随机方法更好的工具在预测无序结合残基方面明显优于预测结合IDR。我们确定了至少一种相对准确的工具,用于预测无序的蛋白质结合和无序的核酸结合AA。对与蛋白质和核酸相互作用之间的交叉预测分析表明,大多数方法与配体类型无关。只有两种核酸结合IDR的预测器和两种蛋白质结合IDR的预测器可被视为配体类型特异性的。我们还讨论了几个潜在的未来方向,这些方向将通过开发更准确的方法来推动该领域的发展,这些方法旨在预测结合残基、减少交叉预测并涵盖更广泛的配体类型。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验