Suppr超能文献

基于序列的相分离相关内在无序区域预测的实证评估

Empirical Assessment of Sequence-Based Predictions of Intrinsically Disordered Regions Involved in Phase Separation.

作者信息

Wu Xuantai, Wang Kui, Hu Gang, Kurgan Lukasz

机构信息

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China.

NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China.

出版信息

Biomolecules. 2025 Jul 25;15(8):1079. doi: 10.3390/biom15081079.

Abstract

Phase separation processes facilitate the formation of membrane-less organelles and involve interactions within structured domains and intrinsically disordered regions (IDRs) in protein sequences. The literature suggests that the involvement of proteins in phase separation can be predicted from their sequences, leading to the development of over 30 computational predictors. We focused on intrinsic disorder due to its fundamental role in related diseases, and because recent analysis has shown that phase separation can be accurately predicted for structured proteins. We evaluated eight representative amino acid-level predictors of phase separation, capable of identifying phase-separating IDRs, using a well-annotated, low-similarity test dataset under two complementary evaluation scenarios. Several methods generate accurate predictions in the easier scenario that includes both structured and disordered sequences. However, we demonstrate that modern disorder predictors perform equally well in this scenario by effectively differentiating phase-separating IDRs from structured regions. In the second, more challenging scenario-considering only predictions in disordered regions-disorder predictors underperform, and most phase separation predictors produce only modestly accurate results. Moreover, some predictors are broadly biased to classify disordered residues as phase-separating, which results in low predictive performance in this scenario. Finally, we recommend PSPHunter as the most accurate tool for identifying phase-separating IDRs in both scenarios.

摘要

相分离过程促进了无膜细胞器的形成,涉及蛋白质序列中结构化结构域和内在无序区域(IDR)之间的相互作用。文献表明,蛋白质参与相分离可以从其序列中预测出来,这导致了30多种计算预测工具的开发。我们关注内在无序,因为它在相关疾病中具有重要作用,而且最近的分析表明,相分离可以针对结构化蛋白质进行准确预测。我们在两种互补的评估场景下,使用一个注释良好、低相似性的测试数据集,评估了八种代表性的相分离氨基酸水平预测工具,这些工具能够识别相分离的IDR。在包括结构化和无序序列的较简单场景中,有几种方法能做出准确的预测。然而,我们证明,现代无序预测工具在这种场景下也能通过有效区分相分离的IDR和结构化区域而表现得同样出色。在第二种更具挑战性的场景中——仅考虑对无序区域的预测——无序预测工具表现不佳,大多数相分离预测工具只能得出适度准确的结果。此外,一些预测工具普遍倾向于将无序残基分类为相分离,这导致在这种场景下预测性能较低。最后,我们推荐PSPHunter作为在两种场景下识别相分离IDR的最准确工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验