Suppr超能文献

用细胞培养基进行表面处理:一种增强镁及镁基合金抗生物腐蚀性能的仿生方法——综述

Surface Treatment With Cell Culture Medium: A Biomimetic Approach to Enhance the Resistance to Biocorrosion in Mg and Mg-Based Alloys-A Review.

作者信息

Khalili Vida, Virtanen Sannakaisa, Boccaccini Aldo R

机构信息

Institute of Biomaterials, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.

Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany.

出版信息

J Biomed Mater Res B Appl Biomater. 2025 Sep;113(9):e35617. doi: 10.1002/jbm.b.35617.

Abstract

In contemporary orthopedics, the demand for temporary biodegradable bone implants has driven the development of materials capable of supporting bone regeneration while gradually resorbing in the body, thereby eliminating the need for secondary removal surgery. Magnesium (Mg) and its alloys have emerged as promising candidates due to their bioactivity, osteoconductivity, and mechanical properties that closely match those of natural bone. Furthermore, the release of Mg ions during degradation has been shown to stimulate osteoblast activity and enhance bone remodeling. Despite the advantages associated with Mg as a bone implant, there are also constraints on its clinical application. The elevated pH values inherent to the Mg corrosion process may adversely affect biocompatibility, in addition to general concerns about the burst release of H gas that originates from the cathodic reaction of Mg corrosion. To address these challenges, biomimetic surface modifications have emerged as a promising strategy to modulate the degradation behavior of Mg and its alloys. In particular, Dulbecco's Modified Eagle Medium (DMEM) cell culture medium serves as an effective biomimetic environment for forming corrosion-resistant layers on Mg-based implants, maintaining physiological pH and mimicking in vivo degradation behavior by facilitating the formation of a carbonated Ca/Mg-phosphate layer with superior resistance to Cl attack compared to Mg(OH). Immersion in DMEM has been shown to induce the formation of calcium phosphate rich protective layers that mimic the natural bone environment and mitigate the rapid biodegradation of Mg and its alloys. This paper provides a review of recent advancements in DMEM modification of Mg-based alloys, including ex situ and in situ formation of protective layers, and in vitro biocorrosion behavior in cell culture medium. Key findings emphasize that synthetic buffers like Tris/HCl and HEPES accelerate corrosion and hinder calcium phosphate formation, while protein-rich media risk contamination during prolonged use. Additionally, electrostatic interactions in DMEM promote hydroxyapatite crystallization, functionalized intermediate layers enhance calcium phosphate deposition, and fluid dynamics must be carefully controlled to stabilize the protective layer. Despite recent progress, key knowledge gaps remain, including limited understanding of the long-term performance and mechanical stability of biomimetic layers under dynamic physiological conditions, as well as the unclear impact of complex in vivo factors like immune responses and enzymatic activity on their degradation.

摘要

在当代骨科领域,对临时性可生物降解骨植入物的需求推动了能够支持骨再生同时在体内逐渐吸收的材料的发展,从而无需二次取出手术。镁(Mg)及其合金因其生物活性、骨传导性以及与天然骨紧密匹配的力学性能而成为有前景的候选材料。此外,降解过程中镁离子的释放已被证明能刺激成骨细胞活性并增强骨重塑。尽管镁作为骨植入物具有诸多优势,但其临床应用也存在限制。镁腐蚀过程中固有的pH值升高可能会对生物相容性产生不利影响,此外,人们普遍担心源自镁腐蚀阴极反应的氢气的突发释放。为应对这些挑战,仿生表面改性已成为调节镁及其合金降解行为的一种有前景的策略。特别是,杜尔贝科改良伊格尔培养基(DMEM)细胞培养基是一种有效的仿生环境,可在镁基植入物上形成耐腐蚀层,维持生理pH值,并通过促进形成比氢氧化镁更耐氯离子侵蚀的碳酸化钙/镁磷酸盐层来模拟体内降解行为。研究表明,浸入DMEM可诱导形成富含磷酸钙的保护层,该保护层模拟天然骨环境并减轻镁及其合金的快速生物降解。本文综述了基于镁合金的DMEM改性的最新进展,包括保护层的异位和原位形成以及在细胞培养基中的体外生物腐蚀行为。主要发现强调,像Tris/HCl和HEPES这样的合成缓冲剂会加速腐蚀并阻碍磷酸钙形成,而富含蛋白质的培养基在长期使用过程中有污染风险。此外,DMEM中的静电相互作用促进羟基磷灰石结晶,功能化中间层增强磷酸钙沉积,并且必须仔细控制流体动力学以稳定保护层。尽管最近取得了进展,但关键的知识空白仍然存在,包括对动态生理条件下仿生层的长期性能和机械稳定性了解有限,以及免疫反应和酶活性等复杂体内因素对其降解的影响尚不清楚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验