Chaudhari Yogesh Subhash, Chaudhari Manisha Yogesh, Gholap Amol D, Alam Mohammad Intakhab, Khalid Mohammad, Webster Thomas J, Gowri S, Faiyazuddin Md
Department of Pharmaceutics, Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar, Maharashtra, India.
Department of Pharmaceutics, D. Y. Patil University School of Pharmacy, Navi Mumbai, Maharashtra, India.
Front Bioeng Biotechnol. 2025 Jul 14;13:1617585. doi: 10.3389/fbioe.2025.1617585. eCollection 2025.
Magnesium (Mg) alloys are transformative candidates for biodegradable orthopedic implants due to their bone-mimetic elastic modulus (10-30 GPa), biocompatibility, and osteogenic properties. However, rapid corrosion (>2 mm/year) and hydrogen gas evolution (0.1-0.3 mL/cm/day) in physiological environments hinder clinical adoption. This systematic review, leveraging insights from seven databases (PubMed, Embase, Web of Science™, Scopus, IEEE Xplore, FSTA, and Google Scholar), critically evaluates surface engineering innovations that address these challenges. Key findings demonstrate that micro-arc oxidation (MAO) reduces corrosion rates by 60% (0.3-0.8 mm/year) through ceramic oxide layers, while hydroxyapatite (HA) coatings further enhance osteoconductivity (0.25 mm/year). Nanoscale MgO not only promotes osteoblast adhesion (40% increase) and collagen synthesis but also reduces bacterial colonization by 78% via surface energy modulation, eliminating antibiotic dependency. Advanced strategies like hybrid coatings (e.g., zwitterionic polymers) and alloying with Zn/Ca/Sr synergistically improve mechanical strength (up to 380 MPa), degradation control (0.1-0.5 mm/year), and angiogenesis via Mg-mediated VEGF upregulation. Emerging trends such as 4D bioprinting of pH-responsive Mg scaffolds and patient-specific implants highlight the shift toward dynamic, personalized solutions. Despite progress, challenges persist in synchronizing degradation with bone healing timelines, particularly in osteoporotic or diabetic patients. This review underscores the paradigm shift toward nano surface engineering, positioning Mg alloys as multifunctional platforms for next-generation orthopedic implants, while advocating for interdisciplinary collaboration to bridge translational gaps.
镁(Mg)合金因其与骨相似的弹性模量(10 - 30 GPa)、生物相容性和成骨特性,成为可生物降解骨科植入物的变革性候选材料。然而,在生理环境中快速腐蚀(>2毫米/年)和氢气析出(0.1 - 0.3毫升/平方厘米/天)阻碍了其临床应用。本系统综述利用来自七个数据库(PubMed、Embase、Web of Science™、Scopus、IEEE Xplore、FSTA和谷歌学术)的见解,批判性地评估了应对这些挑战的表面工程创新。主要研究结果表明,微弧氧化(MAO)通过陶瓷氧化物层将腐蚀速率降低60%(0.3 - 0.8毫米/年),而羟基磷灰石(HA)涂层进一步提高骨传导性(0.25毫米/年)。纳米级MgO不仅促进成骨细胞粘附(增加40%)和胶原蛋白合成,还通过表面能调节将细菌定植减少78%,消除了对抗生素的依赖。诸如混合涂层(如两性离子聚合物)和与锌/钙/锶合金化等先进策略通过镁介导的血管内皮生长因子(VEGF)上调协同提高机械强度(高达380兆帕)、降解控制(0.1 - 0.5毫米/年)和血管生成。诸如pH响应性镁支架的4D生物打印和个性化植入物等新兴趋势凸显了向动态、个性化解决方案的转变。尽管取得了进展,但在使降解与骨愈合时间线同步方面仍存在挑战,尤其是在骨质疏松或糖尿病患者中。本综述强调了向纳米表面工程的范式转变,将镁合金定位为下一代骨科植入物的多功能平台,同时倡导跨学科合作以弥合转化差距。