Suppr超能文献

小脑共济失调中的冲动性:一项在线多维评估。

Impulsivity in cerebellar ataxia: an online, multidimensional assessment.

作者信息

Chasalow Brooke, Flaumenhaft Yakov, De Picciotto Yael, Lin Chi-Ying R, Montaser-Kouhsari Leila, Saban William

机构信息

Center for Accessible Neuropsychology, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.

Department of Occupational Therapy, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.

出版信息

J Neural Transm (Vienna). 2025 Sep 13. doi: 10.1007/s00702-025-03020-z.

Abstract

While considered a motor control structure, the cerebellum contributes to non-motor functions, including impulsivity. However, whether it contributes to impulsivity in a domain-specific manner remains unknown. Studies on cerebellar ataxia (CA), a common model for cerebellar dysfunction, typically have small sample sizes, limiting robustness. In a multicenter cross-sectional study, we investigated the cerebellum's role in various forms of impulsivity by comparing large cohorts of CA to age- and education-matched neurotypical healthy (NH) controls. Additionally, to examine the ability to identify individuals with CA using impulsivity features alone, we developed supervised machine learning (ML) models. In experiment 1 (CA = 140, NH = 136), impulsivity was assessed using the BIS-11 questionnaire. In experiment 2 (CA = 110, NH = 107), performance-based impulsivity was assessed using the MCQ-27, evaluating delay discounting in monetary decision-making. Two ML models-Logistic Regression and Random Forest-were utilized to classify disorder status (CA/NH). The CA group showed higher BIS-11 scores (p = 0.001), indicating higher impulsivity, driven by motor (p < 0.001) and attention (p = 0.002) impulsivity. However, the CA group exhibited lower non-planning impulsivity (p = 0.014). In the MCQ-27, the CA group showed lower k-values (p < 0.005), indicating reduced impulsivity in monetary decisions. Both ML models demonstrated strong classification performance (AUC ≥ 0.85) in independent datasets. This study highlights the cerebellum's selective role in impulsivity. We found higher motor and attentional impulsivity in CA alongside lower non-planning and decision-making impulsivity. This suggests a unique impulsivity profile in CA that may indicate a compensatory mechanism for future events. ML models demonstrated high classification performance, suggesting impulsivity is a core non-motor feature of CA.

摘要

虽然小脑被认为是一种运动控制结构,但它也参与非运动功能,包括冲动性。然而,它是否以特定领域的方式对冲动性有影响仍不清楚。小脑共济失调(CA)是小脑功能障碍的常见模型,对其进行的研究通常样本量较小,限制了研究的稳健性。在一项多中心横断面研究中,我们通过比较大量CA患者与年龄和教育程度匹配的神经典型健康(NH)对照,研究了小脑在各种形式冲动性中的作用。此外,为了检验仅使用冲动性特征识别CA患者的能力,我们开发了监督机器学习(ML)模型。在实验1(CA = 140,NH = 136)中,使用BIS-11问卷评估冲动性。在实验2(CA = 110,NH = 107)中,使用MCQ-27评估基于表现的冲动性,评估货币决策中的延迟折扣。使用两种ML模型——逻辑回归和随机森林——对疾病状态(CA/NH)进行分类。CA组的BIS-11得分更高(p = 0.001),表明冲动性更高,这是由运动冲动性(p < 0.001)和注意力冲动性(p = 0.002)驱动的。然而,CA组的非计划性冲动性较低(p = 0.014)。在MCQ-27中,CA组的k值较低(p < 0.005),表明在货币决策中的冲动性降低。两种ML模型在独立数据集中均表现出强大的分类性能(AUC≥0.85)。本研究突出了小脑在冲动性中的选择性作用。我们发现CA患者的运动和注意力冲动性较高,而非计划性和决策冲动性较低。这表明CA患者有独特的冲动性特征,可能预示着对未来事件的一种补偿机制。ML模型表现出较高的分类性能,表明冲动性是CA的核心非运动特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验