Suppr超能文献

最近有关小脑的数据需要新的模型和理论。

Recent data on the cerebellum require new models and theories.

机构信息

Academy of Medical Engineering and Translational Medicine, Medical Faculty, Tianjin University, Tianjin 300072, China; Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.

Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan. Electronic address: https://twitter.com/DeschutterOIST.

出版信息

Curr Opin Neurobiol. 2023 Oct;82:102765. doi: 10.1016/j.conb.2023.102765. Epub 2023 Aug 15.

Abstract

The cerebellum has been a popular topic for theoretical studies because its structure was thought to be simple. Since David Marr and James Albus related its function to motor skill learning and proposed the Marr-Albus cerebellar learning model, this theory has guided and inspired cerebellar research. In this review, we summarize the theoretical progress that has been made within this framework of error-based supervised learning. We discuss the experimental progress that demonstrates more complicated molecular and cellular mechanisms in the cerebellum as well as new cell types and recurrent connections. We also cover its involvement in diverse non-motor functions and evidence of other forms of learning. Finally, we highlight the need to explain these new experimental findings into an integrated cerebellar model that can unify its diverse computational functions.

摘要

小脑一直是理论研究的热门话题,因为其结构被认为较为简单。自从 David Marr 和 James Albus 将其功能与运动技能学习联系起来,并提出了 Marr-Albus 小脑学习模型之后,该理论一直指导和启发着小脑研究。在这篇综述中,我们总结了在基于错误的监督学习这一框架内取得的理论进展。我们讨论了证明小脑中存在更复杂的分子和细胞机制以及新的细胞类型和递归连接的实验进展。我们还介绍了小脑参与多种非运动功能的情况以及其他形式学习的证据。最后,我们强调需要将这些新的实验结果纳入一个能够统一其多样化计算功能的综合小脑模型中进行解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验