Olesinski Alon, Lederman Richard, Azraq Yusef, Sosna Jacob, Joskowicz Leo
School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Radiology, Hadassah University Medical Center, Jerusalem, Israel.
Int J Comput Assist Radiol Surg. 2025 Sep 13. doi: 10.1007/s11548-025-03513-y.
Manual detection and measurement of structures in volumetric scans is routine in clinical practice but is time-consuming and subject to observer variability. Automatic deep learning-based solutions are effective but require a large dataset of manual annotations by experts. We present a novel annotation-efficient semi-supervised deep learning method for automatic detection, segmentation, and measurement of the short axis length (SAL) of mediastinal lymph nodes (LNs) in contrast-enhanced CT (ceCT) scans.
Our semi-supervised method combines the precision of expert annotations with the quantity advantages of pseudolabeled data. It uses an ensemble of 3D nnU-Net models trained on a few expert-annotated scans to generate pseudolabels on a large dataset of unannotated scans. The pseudolabels are then filtered to remove false positive LNs by excluding LNs outside the mediastinum and LNs overlapping with other anatomical structures. Finally, a single 3D nnU-Net model is trained using the filtered pseudo-labels. Our method optimizes the ratio of annotated/non-annotated dataset sizes to achieve the desired performance, thus reducing manual annotation effort.
Experimental studies on three chest ceCT datasets with a total of 268 annotated scans (1817 LNs), of which 134 scans were used for testing and the remaining for ensemble training in batches of 17, 34, 67, and 134 scans, as well as 710 unannotated scans, show that the semi-supervised models' recall improvements were 11-24% (0.72-0.87) while maintaining comparable precision levels. The best model achieved mean SAL differences of 1.65 ± 0.92 mm for normal LNs and 4.25 ± 4.98 mm for enlarged LNs, both within the observer variability.
Our semi-supervised method requires one-fourth to one-eighth less annotations to achieve a performance to supervised models trained on the same dataset for the automatic measurement of mediastinal LNs in chest ceCT. Using pseudolabels with anatomical filtering may be effective to overcome the challenges of the development of AI-based solutions in radiology.
在临床实践中,对容积扫描中的结构进行手动检测和测量是常规操作,但耗时且易受观察者差异影响。基于深度学习的自动解决方案很有效,但需要专家提供大量手动标注的数据集。我们提出了一种新颖的、高效标注的半监督深度学习方法,用于在增强CT(ceCT)扫描中自动检测、分割和测量纵隔淋巴结(LN)的短轴长度(SAL)。
我们的半监督方法将专家标注的精度与伪标签数据的数量优势相结合。它使用在少数专家标注的扫描数据上训练的3D nnU-Net模型集成,在大量未标注的扫描数据上生成伪标签。然后通过排除纵隔外的淋巴结和与其他解剖结构重叠的淋巴结来过滤伪标签,以去除假阳性LN。最后,使用过滤后的伪标签训练单个3D nnU-Net模型。我们的方法优化了标注/未标注数据集大小的比例,以实现所需的性能,从而减少手动标注工作。
对三个胸部ceCT数据集进行的实验研究,共有268次标注扫描(1817个LN),其中134次扫描用于测试,其余的按17、34、67和134次扫描分批进行集成训练,以及710次未标注扫描,结果表明半监督模型的召回率提高了11%-24%(0.72-0.87),同时保持了相当的精度水平。最佳模型对正常LN的平均SAL差异为1.65±0.92mm,对肿大LN的平均SAL差异为4.25±4.98mm,均在观察者差异范围内。
我们的半监督方法在胸部ceCT中自动测量纵隔LN时,所需的标注比在相同数据集上训练的监督模型少四分之一到八分之一,就能达到相同的性能。使用带有解剖学过滤的伪标签可能有效地克服放射学中基于人工智能的解决方案开发面临的挑战。