Suppr超能文献

利用儿科脑磁共振成像扫描进行髓鞘成熟度自动估计的深度学习模型的开发与评估

Development and Evaluation of Deep Learning Models for Automated Estimation of Myelin Maturation Using Pediatric Brain MRI Scans.

作者信息

Akinci D'Antonoli Tugba, Todea Ramona-Alexandra, Leu Nora, Datta Alexandre N, Stieltjes Bram, Pruefer Friederike, Wasserthal Jakob

机构信息

From the Department of Pediatric Radiology (T.A.D., N.L., F.P.) and Department of Pediatric Neurology and Developmental Medicine (A.N.D.), University Children's Hospital Basel, Spitalstrasse 33, 4056 Basel, Switzerland; Institute of Radiology and Nuclear Medicine, Cantonal Hospital Basel, Basel, Switzerland (T.A.D.); and Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine (R.A.T.) and Department of Research and Analysis, Clinic of Radiology and Nuclear Medicine (B.S., J.W.), University Hospital Basel, Basel, Switzerland.

出版信息

Radiol Artif Intell. 2023 Jul 26;5(5):e220292. doi: 10.1148/ryai.220292. eCollection 2023 Sep.

Abstract

PURPOSE

To predict the corresponding age of myelin maturation from brain MRI scans in infants and young children by using a deep learning algorithm and to build upon previously published models.

MATERIALS AND METHODS

Brain MRI scans acquired between January 1, 2011, and March 17, 2021, in our institution in patients aged 0-3 years were retrospectively retrieved from the archive. An ensemble of two-dimensional (2D) and three-dimensional (3D) convolutional neural network models was trained and internally validated in 710 patients to predict myelin maturation age on the basis of radiologist-generated labels. The model ensemble was tested on an internal dataset of 123 patients and two external datasets of 226 (0-25 months of age) and 383 (0-2 months of age) healthy children and infants, respectively. Mean absolute error (MAE) and Pearson correlation coefficients were used to assess model performance.

RESULTS

The 2D, 3D, and 2D-plus-3D ensemble models showed MAE values of 1.43, 2.55, and 1.77 months, respectively, on the internal test set, values of 2.26, 2.27, and 1.22 months on the first external test set, and values of 0.44, 0.27, and 0.31 months on the second external test set. The ensemble model outperformed the previous state-of-the-art model on the same external test set (MAE = 1.22 vs 2.09 months).

CONCLUSION

The proposed deep learning model accurately predicted myelin maturation age using pediatric brain MRI scans and may help reduce the time needed to complete this task, as well as interobserver variability in radiologist predictions. Pediatrics, MR Imaging, CNS, Brain/Brain Stem, Convolutional Neural Network (CNN), Artificial Intelligence, Pediatric Imaging, Myelin Maturation, Brain MRI, Neuroradiology © RSNA, 2023.

摘要

目的

通过使用深度学习算法,根据婴幼儿脑部磁共振成像(MRI)扫描预测髓鞘成熟的相应年龄,并在先前发表的模型基础上进行改进。

材料与方法

回顾性检索2011年1月1日至2021年3月17日在我们机构获取的0至3岁患者的脑部MRI扫描图像。训练了二维(2D)和三维(3D)卷积神经网络模型的集成,并在710例患者中进行内部验证,以根据放射科医生生成的标签预测髓鞘成熟年龄。该模型集成在123例患者的内部数据集以及分别为226例(0至25个月龄)和383例(0至2个月龄)健康儿童和婴儿的两个外部数据集上进行测试。使用平均绝对误差(MAE)和皮尔逊相关系数评估模型性能。

结果

在内部测试集上,2D、3D和2D加3D集成模型的MAE值分别为1.43、2.55和1.77个月;在第一个外部测试集上的值分别为2.26、2.27和1.22个月;在第二个外部测试集上的值分别为0.44、0.27和0.31个月。在相同的外部测试集上,集成模型优于先前的最先进模型(MAE = 1.22对2.09个月)。

结论

所提出的深度学习模型使用儿科脑部MRI扫描准确预测了髓鞘成熟年龄,并可能有助于减少完成此任务所需的时间以及放射科医生预测中的观察者间变异性。儿科学、磁共振成像、中枢神经系统、脑/脑干、卷积神经网络(CNN)、人工智能、儿科成像、髓鞘成熟、脑部MRI、神经放射学 © RSNA,2023。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e247/10546368/56aacf7f66e2/ryai.220292.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验