Suppr超能文献

长链非编码RNA MIR31HG通过促进异型细胞内细胞形成促进头颈部鳞状细胞癌的免疫逃逸。

LncRNA MIR31HG facilitates immune escape in head and neck squamous cell carcinoma by promoting heterotypic cell-in-cell formation.

作者信息

Fang Qigen, Yuan Junhui, Zhang Xu, Lin Lisong

机构信息

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Fujian Medical University No. 246, Yangqiao Middle Road, Gulou District, Fuzhou 35000, Fujian, P. R. China.

The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital Zhengzhou 450008, Henan, P. R. China.

出版信息

Am J Cancer Res. 2025 Aug 15;15(8):3395-3416. doi: 10.62347/MMZP1913. eCollection 2025.

Abstract

The aggressive nature of head and neck squamous cell carcinoma (HNSCC) is profoundly shaped by a complex interplay between malignant cells and the host immune system. A key feature of this interplay is the formation of cell-in-cell (CIC) structures, which facilitate immune evasion and contribute to shaping the tumor microenvironment. Long non-coding RNAs (lncRNAs), including MIR31HG, have emerged as crucial modulators of tumor immunity and metastasis. In this study, we investigated the role of MIR31HG in orchestrating heterotypic CIC formation and assessed its impact on tumor growth, immune surveillance, and chemoresistance in HNSCC. Analysis of TCGA and GTEx datasets confirmed the differential expression of CIC-related genes between HNSCC and normal tissues. Functional assays demonstrated that CIC structure formation substantially augmented the malignant properties of Cal27 cells, including increased resistance to both cisplatin and gemcitabine. Critically, genetic depletion of MIR31HG in CIC-positive cells (CIC sh-MIR31HG) potently suppressed tumor progression, as evidenced by reduced cell proliferation and increased apoptosis. Furthermore, silencing MIR31HG also remodeled the immunosuppressive landscape; it downregulated the expression of immune checkpoint protein PD-L1 and decreased the secretion of immunosuppressive cytokines TGF-β and IL-10. This intervention also reversed therapeutic resistance, rendering CIC sh-MIR31HG cells more susceptible to cisplatin- and gemcitabine-induced apoptosis. These findings were validated in a murine xenograft model, where histological analyses confirmed that tumors originating from CIC sh-MIR31HG cells displayed reduced volume and elevated apoptotic activity. Collectively, MIR31HG is a pivotal regulator of heterotypic CIC formation in HNSCC. This mechanism promotes HNSCC cell survival, fosters an immunosuppressive microenvironment, and drives chemoresistance. Therefore, targeting MIR31HG represents a viable therapeutic avenue to disrupt immune resistance and enhance chemosensitivity in HNSCC.

摘要

头颈部鳞状细胞癌(HNSCC)的侵袭性在很大程度上由恶性细胞与宿主免疫系统之间复杂的相互作用所塑造。这种相互作用的一个关键特征是细胞内细胞(CIC)结构的形成,它促进免疫逃逸并有助于塑造肿瘤微环境。包括MIR31HG在内的长链非编码RNA(lncRNA)已成为肿瘤免疫和转移的关键调节因子。在本研究中,我们研究了MIR31HG在协调异型CIC形成中的作用,并评估了其对HNSCC肿瘤生长、免疫监视和化疗耐药性的影响。对TCGA和GTEx数据集的分析证实了HNSCC与正常组织之间CIC相关基因的差异表达。功能测定表明,CIC结构的形成显著增强了Cal27细胞的恶性特性,包括对顺铂和吉西他滨耐药性的增加。至关重要的是,CIC阳性细胞(CIC sh-MIR31HG)中MIR31HG的基因缺失有力地抑制了肿瘤进展,细胞增殖减少和凋亡增加证明了这一点。此外,沉默MIR31HG还重塑了免疫抑制格局;它下调了免疫检查点蛋白PD-L1的表达,并减少了免疫抑制细胞因子TGF-β和IL-10的分泌。这种干预还逆转了治疗耐药性,使CIC sh-MIR31HG细胞对顺铂和吉西他滨诱导的凋亡更敏感。这些发现在小鼠异种移植模型中得到了验证,组织学分析证实,源自CIC sh-MIR31HG细胞的肿瘤体积减小,凋亡活性升高。总体而言,MIR31HG是HNSCC中异型CIC形成的关键调节因子。这一机制促进了HNSCC细胞的存活,促进了免疫抑制微环境的形成,并导致化疗耐药。因此,靶向MIR31HG是破坏免疫抵抗和增强HNSCC化疗敏感性的一条可行治疗途径。

相似文献

1
LncRNA MIR31HG facilitates immune escape in head and neck squamous cell carcinoma by promoting heterotypic cell-in-cell formation.
Am J Cancer Res. 2025 Aug 15;15(8):3395-3416. doi: 10.62347/MMZP1913. eCollection 2025.
2
The landscape of long non-coding RNA during cSCC progression.
Br J Dermatol. 2025 Mar 27. doi: 10.1093/bjd/ljaf108.
4
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.
Front Immunol. 2025 Jul 24;16:1557461. doi: 10.3389/fimmu.2025.1557461. eCollection 2025.
7
NKAP overexpression promotes gastric cancer immune escape by inducing IL-10 secretion from mature dendritic cells during anti-PD-L1 therapy.
J Gastrointest Oncol. 2025 Aug 30;16(4):1443-1460. doi: 10.21037/jgo-2025-491. Epub 2025 Aug 25.
10
Current studies of immunotherapy in head and neck cancer.
Clin Otolaryngol. 2018 Feb;43(1):13-21. doi: 10.1111/coa.12895. Epub 2017 May 29.

本文引用的文献

1
STAT3 interactome predicts presence of proteins that regulate immune system in oral squamous cell carcinoma.
J Oral Biosci. 2024 Dec;66(4):67-73. doi: 10.1016/j.job.2024.09.002. Epub 2024 Sep 3.
2
LncRNA-encoded peptides in cancer.
J Hematol Oncol. 2024 Aug 12;17(1):66. doi: 10.1186/s13045-024-01591-0.
3
Surgical margins in head and neck squamous cell carcinoma: A narrative review.
Int J Surg. 2024 Jun 1;110(6):3680-3700. doi: 10.1097/JS9.0000000000001306.
4
Cell-in-cell phenomena across the tree of life.
Sci Rep. 2024 Mar 29;14(1):7535. doi: 10.1038/s41598-024-57528-7.
5
6
Mapping Cell-in-Cell Structures in Oral Squamous Cell Carcinoma.
Cells. 2023 Oct 8;12(19):2418. doi: 10.3390/cells12192418.
7
Cell-in-cell structure in cancer: evading strategies from anti-cancer therapies.
Front Oncol. 2023 Sep 18;13:1248097. doi: 10.3389/fonc.2023.1248097. eCollection 2023.
8
Non-Professional Phagocytosis Increases in Melanoma Cells and Tissues with Increasing E-Cadherin Expression.
Curr Oncol. 2023 Aug 11;30(8):7542-7552. doi: 10.3390/curroncol30080547.
9
Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis.
Cells. 2023 Jun 14;12(12):1620. doi: 10.3390/cells12121620.
10
The tumor ecosystem in head and neck squamous cell carcinoma and advances in ecotherapy.
Mol Cancer. 2023 Apr 6;22(1):68. doi: 10.1186/s12943-023-01769-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验