He Qifu, Zhang Mingrong, Xiao Sheng, Guo Zijing
Wuhou District People's Hospital, Chengdu, China.
Wuhou District Health Hospital Woman and Children, Chengdu, China.
Front Nutr. 2025 Aug 29;12:1648307. doi: 10.3389/fnut.2025.1648307. eCollection 2025.
Folic acid, an essential micronutrient in male reproductive physiology, serves as a critical cofactor in one-carbon metabolism by facilitating nucleotide biosynthesis and epigenetic methylation processes fundamental to spermatogenesis. Its metabolic role is characterized by two pivotal biochemical transformations: the remethylation of homocysteine to methionine and the subsequent generation of S-adenosylmethionine. These reactions collectively sustain nucleic acid synthesis, preserve genomic integrity, and modulate transcriptional regulation in developing germ cells. Compromised folate status disrupts small nuclear RNA (snRNA) maturation and methylation patterns, resulting in impaired spliceosome complex formation and compromised pre-messenger RNA (pre-mRNA) splicing accuracy. Such molecular perturbations generate defective transcripts that ultimately undermine proteomic homeostasis during spermiogenesis. Preclinical evidence demonstrates that folate deficiency induces chromosomal segregation errors, mitotic spindle checkpoint dysfunction, and concurrent oxidative/endoplasmic reticulum stress pathways-all converging to manifest as teratozoospermia, diminished motility, and elevated sperm DNA fragmentation indices. Folic acid supplementation can improve snRNA and spliceosomal function, leading to improve semen parameters, particularly in individuals with polymorphisms in folate-metabolizing enzymes such as MTHFR. However, treatment efficacy exhibits dose-dependence, temporal dynamics, pharmacogenetic variation, and synergistic interactions with concurrent micronutrient administration, underscoring the imperative for personalized nutritional approaches. Emerging single-nucleus RNA sequencing technologies have elucidated intricate regulatory circuitry connecting folate-responsive snRNAs with mRNA processing, miRNA-mediated silencing, and long noncoding RNAs (lncRNAs)-mediated chromatin remodeling. These findings propose candidate molecular signatures for monitoring therapeutic response. Notwithstanding these advances, the mechanistic interplay between folate metabolism and snRNA processing machinery remains incompletely characterized, and evidence-based clinical protocols for infertility management remain undefined. Future research directions should encompass: (1) multi-omics integration (epigenomic-transcriptomic-proteomic); (2) pharmacogenomic-guided intervention trials; and (3) dynamic splicing efficiency quantification platforms. Such approaches will enable precision therapeutic stratification to maximize clinical outcomes while mitigating potential adverse effects. This critical synthesis delineates the mechanistic nexus between folate-dependent snRNA regulation, RNA splicing fidelity, and spermatogenic competence, while advocating for biomarker-driven, genotype-tailored therapeutic paradigms in folate-responsive male infertility.
叶酸是男性生殖生理中的一种必需微量营养素,通过促进核苷酸生物合成和精子发生所必需的表观遗传甲基化过程,在一碳代谢中作为关键的辅助因子。其代谢作用的特点是两个关键的生化转化:同型半胱氨酸重新甲基化为甲硫氨酸,以及随后生成S-腺苷甲硫氨酸。这些反应共同维持核酸合成,保持基因组完整性,并调节发育中的生殖细胞中的转录调控。叶酸状态受损会破坏小核RNA(snRNA)的成熟和甲基化模式,导致剪接体复合物形成受损和前体信使RNA(pre-mRNA)剪接准确性受损。这种分子扰动会产生有缺陷的转录本,最终在精子发生过程中破坏蛋白质组的稳态。临床前证据表明,叶酸缺乏会导致染色体分离错误、有丝分裂纺锤体检查点功能障碍,以及同时发生的氧化/内质网应激途径——所有这些都会导致畸形精子症、活力下降和精子DNA碎片化指数升高。补充叶酸可以改善snRNA和剪接体功能,从而改善精液参数,特别是在叶酸代谢酶(如MTHFR)存在多态性的个体中。然而,治疗效果表现出剂量依赖性、时间动态性、药物遗传学差异以及与同时补充微量营养素的协同相互作用,这突出了个性化营养方法的必要性。新兴的单核RNA测序技术已经阐明了将叶酸反应性snRNA与mRNA加工、miRNA介导的沉默和长链非编码RNA(lncRNA)介导的染色质重塑联系起来的复杂调控电路。这些发现提出了用于监测治疗反应的候选分子特征。尽管有这些进展,但叶酸代谢与snRNA加工机制之间的机制相互作用仍未完全阐明,基于证据的不孕症管理临床方案仍未确定。未来的研究方向应包括:(1)多组学整合(表观基因组-转录组-蛋白质组);(2)药物基因组学指导的干预试验;(3)动态剪接效率量化平台。这些方法将实现精准治疗分层,以最大限度地提高临床疗效,同时减轻潜在的不良反应。这一关键综述描绘了叶酸依赖性snRNA调控、RNA剪接保真度和精子发生能力之间的机制联系,同时倡导在叶酸反应性男性不育症中采用生物标志物驱动、基因型定制的治疗模式。