Jeewani Peduruhewa H, Brown Robert W, Rhymes Jennifer M, Evans Chris D, Chadwick Dave R, Jones Davey L
School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK.
UK Centre for Ecology and Hydrology, Bangor, Gwynedd LL57 2UW UK.
Biochar. 2025;7(1):108. doi: 10.1007/s42773-025-00501-y. Epub 2025 Sep 10.
The draining and conversion of peatlands for agriculture has led to their degradation globally, diminishing their carbon (C) storage capacity and functioning. However, rewetting, alongside the addition of organic/inorganic amendments, has the potential to accelerate peat formation and C accrual. The aim of this experiment was therefore to examine the combined benefits of altering water table depth and adding organic (e.g., biochar, paper waste, biosolids, cereal straw; 20 t C ha) and inorganic (e.g., FeSO; 0.5 t ha) materials on net C storage and peatland functioning (i.e., microbial communities, greenhouse gas emissions and biogeochemical cycling). The experiment consisted of outdoor agricultural peat mesocosms monitored over 1 year. The relative effectiveness of the amendments in preserving peat-C (t C ha) followed the series: biochar (18.9 t C ha) > residues (17.3 t C ha) > biosolids (17.2 t C ha) > cereal straw (14.5 t C ha) > paper waste (13.3 t C ha) based on C additional rate (20 t C ha). Overall, a high-water table combined with biochar and FeSO addition was the most effective at suppressing enzyme activity (e.g., β-glucosidase, phenol oxidase, cellobiase), methanogen activity (e.g., ) and peat mineralization rate. We ascribe this in part to changes in the fungal and bacterial community structure (e.g., reductions in Actinobacteria by - 22% and Ascomycota by - 61%). FeSO also increased the Fe-bound C content in the non-rewetted treatment, supporting the 'iron gate' mechanism for C preservation. The mechanisms behind our results appear to be both abiotic (affecting SOC solubility through changes in redox conditions and Fe-C interactions) and biotic (via shifts in microbial community and enzyme activities), creating conditions that enhance C preservation. These findings provide evidence for implementing biochar and FeSO amendments alongside water table management as practical, scalable strategies for restoring C storage capacity in agricultural peatlands.
The online version contains supplementary material available at 10.1007/s42773-025-00501-y.
泥炭地因排水和转为农业用途而在全球范围内退化,其碳(C)储存能力和功能不断下降。然而,重新湿润以及添加有机/无机改良剂有可能加速泥炭形成和碳积累。因此,本实验的目的是研究改变水位深度并添加有机(如生物炭、废纸、生物固体、谷物秸秆;20吨碳/公顷)和无机(如硫酸亚铁;0.5吨/公顷)材料对净碳储存和泥炭地功能(即微生物群落、温室气体排放和生物地球化学循环)的综合效益。该实验包括对户外农业泥炭中宇宙进行为期1年的监测。基于碳添加率(20吨碳/公顷),各改良剂在保护泥炭碳(吨碳/公顷)方面的相对有效性顺序为:生物炭(18.9吨碳/公顷)>残留物(17.3吨碳/公顷)>生物固体(17.2吨碳/公顷)>谷物秸秆(14.5吨碳/公顷)>废纸(13.3吨碳/公顷)。总体而言,高水位结合添加生物炭和硫酸亚铁在抑制酶活性(如β - 葡萄糖苷酶、酚氧化酶、纤维二糖酶)、产甲烷菌活性(如)和泥炭矿化率方面最为有效。我们将此部分归因于真菌和细菌群落结构的变化(如放线菌减少 - 22%,子囊菌减少 - 61%)。硫酸亚铁还增加了未重新湿润处理中与铁结合的碳含量,支持了碳保存的“铁闸”机制。我们结果背后的机制似乎既有非生物因素(通过氧化还原条件和铁 - 碳相互作用的变化影响土壤有机碳溶解度),也有生物因素(通过微生物群落和酶活性的变化),创造了增强碳保存的条件。这些发现为实施生物炭和硫酸亚铁改良剂以及水位管理作为恢复农业泥炭地碳储存能力的实用、可扩展策略提供了证据。
在线版本包含可在10.1007/s42773 - 025 - 00501 - y获取的补充材料。