Li Zhuqing, Ren Jun, Wu Jianing, Li Yingzhu, Song Yunxiao, Zhang Mengyu, Li Shengjie, Cao Wenjun
Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
EPMA J. 2025 Aug 26;16(3):603-620. doi: 10.1007/s13167-025-00419-2. eCollection 2025 Sep.
Primary angle-closure glaucoma (PACG) is a common cause of blindness. Early screening is critical to prevent vision loss, yet current methods rely on specialized ophthalmic imaging, which are resource-intensive and reactive, detecting structural damage only after symptom onset. Therefore, we propose a novel clinlabomics-based machine learning prediction model as a screening tool to stratify individuals at high risk for glaucoma, enabling targeted ophthalmic evaluations, preventing progression of optic nerve damage, and facilitating personalized, long-term monitoring in alignment with the principles of predictive, preventive, and personalized medicine (PPPM/3PM).
This is a multicenter, retrospective study. We retrieved clinical laboratory data from digital medical records between April 2016 and April 2021 in the Eye and ENT Hospital of Fudan University as a discovery set, consisting of 949 normal subjects and 1152 PACG patients. The internal validation was conducted on the dataset of 646 normal subjects and 657 PACG patients from June 2021 to October 2024, also from the Eye and ENT Hospital of Fudan University; the external validation was performed on a dataset of 246 normal subjects and 136 PACG patients from March 2023 to June 2024, from Shanghai Xuhui Central Hospital and Wanbei Coal Electric Group General Hospital. Based on whether there was optic nerve damage, patients were categorized into early PACG patients, namely primary angle closure(PAC) patients, and non-early PACG. Specifically, in the internal validation cohort of 657 PACG patients, 160 were PAC. In the external validation cohort of 136 PACG patients, 41 were PAC. With the inclusion of 50 features, 12 machine learning models were selected and compared to develop the screening model. The feature reduction was performed by SHAP model and Delong test, and the final model was explained by SHAP method. The evaluation parameters of the models include AUC, AUCPR, sensitivity, specificity, and accuracy.
A total of 1841 normal subjects and 1945 PACG patients were included in the study. Among the 12 machine learning models, 4 models, LGBM (AUC = 0.92), XGB (AUC = 0.92), Ada (AUC = 0.91), and GB (AUC = 0.91), performed better than others ( > 0.05). After feature reduction based on feature importance ranking, a final LGBM model of accurate screening PACG ability with six features including TT, PDW, MCV, APTT, TC, and PT was developed, achieving AUC of 0.91, AUCPR of 0.94, sensitivity of 0.89, specificity of 0.79, PPV of 0.84, NPV of 0.85, accuracy of 0.84, and F1 score of 0.86. This final model maintained strong performance in internal validation (AUC = 0.87, accuracy = 0.83, F1 score = 0.85) and external validation (AUC = 0.85, accuracy = 0.89, F1 score = 0.84). The screening efficacy of the final model for PAC was also assessed, where the ROC was 0.85 in the internal validation and 0.84 in the external validation. To enhance its practical application and dissemination, the final model was transformed into an accessible web application.
This study establishes a clinically applicable clinlabomics-based model that implements PPPM principles for glaucoma management through routine blood parameters. Our predictive model enables early identification of high-risk PACG patients, while also facilitating cost-effective population screening and personalized risk assessment through explainable artificial intelligence. The current study demonstrates that routine blood parameters serve as critical indicators for glaucoma risk stratification, predictive diagnosis, and targeted intervention. Consequently, this innovative screening approach provides an essential tool for optimizing clinical outcomes in high-risk populations and improving glaucoma care accessibility, particularly in underserved communities with limited ophthalmic resources.
The online version contains supplementary material available at 10.1007/s13167-025-00419-2.
原发性闭角型青光眼(PACG)是导致失明的常见原因。早期筛查对于预防视力丧失至关重要,但目前的方法依赖于专业的眼科成像,这种方法资源密集且具有反应性,仅在症状出现后才能检测到结构损伤。因此,我们提出了一种基于临床实验室组学的新型机器学习预测模型,作为一种筛查工具,对青光眼高危个体进行分层,从而能够进行有针对性的眼科评估,预防视神经损伤的进展,并根据预测、预防和个性化医学(PPPM/3PM)原则促进个性化的长期监测。
这是一项多中心回顾性研究。我们从复旦大学附属眼耳鼻喉科医院2016年4月至2021年4月的数字医疗记录中检索临床实验室数据作为发现集,其中包括949名正常受试者和1152名PACG患者。内部验证在同样来自复旦大学附属眼耳鼻喉科医院的2021年6月至2024年10月的646名正常受试者和657名PACG患者的数据集中进行;外部验证在2023年3月至2024年6月来自上海市徐汇区中心医院和皖北煤电集团总医院的246名正常受试者和136名PACG患者的数据集中进行。根据是否存在视神经损伤,将患者分为早期PACG患者,即原发性房角关闭(PAC)患者和非早期PACG患者。具体而言,在657名PACG患者的内部验证队列中,160名是PAC患者。在136名PACG患者的外部验证队列中,41名是PAC患者。纳入50个特征后,选择并比较了12种机器学习模型来开发筛查模型。通过SHAP模型和德龙检验进行特征约简,并用SHAP方法解释最终模型。模型的评估参数包括AUC、AUCPR、敏感性、特异性和准确性。
该研究共纳入1841名正常受试者和1945名PACG患者。在12种机器学习模型中,4种模型,即LightGBM(AUC = 0.92)、XGBoost(AUC = 0.92)、Adaboost(AUC = 0.91)和梯度提升(GB,AUC = 0.91),表现优于其他模型(P > 0.05)。基于特征重要性排名进行特征约简后,开发了一个具有TT、PDW、MCV、APTT、TC和PT这六个特征的、具有准确筛查PACG能力的最终LightGBM模型,其AUC为0.91,AUCPR为0.94,敏感性为0.89,特异性为0.79,阳性预测值为0.84,阴性预测值为0.85,准确性为0.84,F1分数为0.86。这个最终模型在内部验证(AUC = 0.87,准确性 = 0.83,F1分数 = 0.85)和外部验证(AUC = 0.85,准确性 = 0.89,F1分数 = 0.84)中均保持了较强的性能。还评估了最终模型对PAC的筛查效果,其在内部验证中的ROC为0.85,在外部验证中的ROC为0.84。为了增强其实际应用和传播,将最终模型转化为一个可访问的网络应用程序。
本研究建立了一个基于临床实验室组学的临床适用模型,该模型通过常规血液参数在青光眼管理中贯彻PPPM原则。我们的预测模型能够早期识别高危PACG患者,同时还通过可解释的人工智能促进具有成本效益的人群筛查和个性化风险评估。当前研究表明,常规血液参数是青光眼风险分层、预测诊断和靶向干预的关键指标。因此,这种创新的筛查方法为优化高危人群的临床结局以及改善青光眼护理可及性提供了重要工具,特别是在眼科资源有限的服务不足社区。
在线版本包含可在10.1007/s13167 - 025 - 00419 - 2获取的补充材料。