Suppr超能文献

用于定制类过氧化物酶活性的双金属(铁-镓)金属有机框架:一种甲烷部分氧化的方法。

Bimetallic (Fe-Ga) Metal-Organic Frameworks for Tailoring Peroxidase-Like Activity: An Approach for Methane Partial Oxidation.

作者信息

Felix Bitencourt Gustavo, Dos Santos Andrade Luana, do Nascimento Amorim Wandson Lukas, Bastos Lima Herich Henrique Lafayete, Tuono Martins Xavier Gabriela, Sáez Acuña José Javier, Alves Carvalho Wagner, El Roz Mohamad, de Melo Lima Thiago, Mandelli Dalmo

机构信息

Centro de Ciências Naturais e Humanas, Universidade Federal do ABCUFABC, Avenida dos Estados, 5001, Santo André/SP 09210-580, Brazil.

Laboratoire Catalyse et Spectrochimie, University of Caen, UNICAEN, ENSICAEN, CNRS, Bd Maréchal Juin, 6, Caen/Calvados 14200, France.

出版信息

ACS Mater Au. 2025 Jul 2;5(5):831-848. doi: 10.1021/acsmaterialsau.5c00045. eCollection 2025 Sep 10.

Abstract

Controllable methane oxidation directly into higher-value-added products under mild conditions remains a challenge due to the stability of the C-H bond. To promote methane oxidation using metal-organic frameworks, it is still necessary to explore ways of stabilizing metal active sites on MOFs due to the leaching and near-complete degradation of the catalyst after exposure to highly oxidative environments. Herein, we report a structural engineering approach based on Ga-Fe complexes in biological systems to tailor the redox-cycle activity. It was imitated by tailoring Ga doping into Fe-MIL-88B. Thus, novel MOFs with differing compositions of Fe and Ga were synthesized and denoted as Fe Ga -MOF. Chemical stability tests in water and oxidative environments confirmed that the bimetallic MOFs indeed exhibited higher stability with reduced leaching of iron sites. FeGa-MOF was demonstrated to be the most stable material while being active and was selected for further catalytic evaluations. Several parameters for the methane oxidation reaction were optimized such as mass of catalyst, temperature, pressure, and others. FeGa-MOF exhibited a productivity of 29.9, 381.9, and 90.1 μmol g for methanol, formic acid, and acetic acid, respectively. Compared to the Fe-MIL-88B, the FeGa-MOF had an enhancement of 36% toward the selectivity of oxygenates and also reduced by almost 95% the undesired evolution of CO. This material demonstrated excellent stability, retaining its catalytic activity after three cycles with only 0.1% metal leaching, highlighting the effectiveness of the stabilization method. In contrast, Fe-MIL-88B showed poor stability, with 38.3% metal leaching after the first cycle. Mechanistic insights indicated a major role of reactive oxygen species in the formation of products.

摘要

由于C-H键的稳定性,在温和条件下将甲烷可控氧化为高附加值产品仍然是一个挑战。为了利用金属有机框架促进甲烷氧化,由于催化剂在暴露于高氧化环境后会发生浸出和几乎完全降解,因此仍有必要探索稳定金属有机框架上金属活性位点的方法。在此,我们报告了一种基于生物系统中Ga-Fe配合物的结构工程方法来调整氧化还原循环活性。通过将Ga掺杂到Fe-MIL-88B中来进行模拟。因此,合成了具有不同Fe和Ga组成的新型金属有机框架,并将其命名为FeGa-MOF。在水和氧化环境中的化学稳定性测试证实,双金属金属有机框架确实表现出更高的稳定性,铁位点的浸出减少。FeGa-MOF被证明是最稳定且具有活性的材料,并被选用于进一步的催化评估。对甲烷氧化反应的几个参数进行了优化,如催化剂质量、温度、压力等。FeGa-MOF对甲醇、甲酸和乙酸的产率分别为29.9、381.9和90.1 μmol g。与Fe-MIL-88B相比,FeGa-MOF对含氧化合物的选择性提高了36%,并且还将不希望的CO生成减少了近95%。这种材料表现出优异的稳定性,在三个循环后仍保留其催化活性,金属浸出仅为0.1%,突出了稳定化方法的有效性。相比之下,Fe-MIL-88B表现出较差的稳定性,在第一个循环后金属浸出率为38.3%。机理分析表明活性氧物种在产物形成中起主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afdf/12426786/f499e40e6cb3/mg5c00045_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验