Caires Cynthia S A, Nascimento Rafael C, Araujo Leandro O, Aguilera Laís F, Oliveira Samuel L, Caires Anderson R L
Instituto de Física, Universidade Federal de Mato Grosso do Sul, CP 549, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil.
ACS Omega. 2025 Aug 25;10(35):40111-40118. doi: 10.1021/acsomega.5c04993. eCollection 2025 Sep 9.
Antimicrobial resistance (AMR) poses a global health challenge, threatening the effectiveness of the current treatment of bacterial infections. The emergence of plasmid-mediated resistance, notably the gene in (), further complicates therapeutic options by conferring resistance to colistin, a last-resort antibiotic. This study explores the potential of conjugated polymer nanoparticles made of poly-[2,6-(4,4-bis-(2-ethylhexyl)-4-cyclopenta-[2,1-;3,4-']-dithiophene)--4,7-(2,1,3-benzothiadiazole)] (PCPDTBT NPs) for antimicrobial photothermal therapy (PPT) against multidrug-resistant, -positive strains. PCPDTBT NPs were synthesized through nanoprecipitation and characterized for their photothermal response upon near-infrared (NIR) laser irradiation at 806 nm (1.13 W). The nanoparticles exhibited efficient absorption in the NIR range and generated substantial photothermal heating sufficient for bacterial inactivation. PCPDTBT NPs maintained their photothermal performance without degradation across multiple irradiation cycles. Photoinactivation assays confirmed PCPDTBT NPs' (17 mg L) ability to significantly reduce bacterial viability, particularly against positive . Scanning electron microscopy (SEM) images confirmed pronounced damage to bacterial cells following photothermal treatment. Overall, PCPDTBT NPs are highly promising as standalone agents for PPT against antibiotic-resistant pathogens, indicating their potential for future therapeutic strategies.
抗菌耐药性(AMR)对全球健康构成挑战,威胁着当前细菌感染治疗的有效性。质粒介导的耐药性的出现,尤其是mcr基因(在大肠杆菌中),通过赋予对黏菌素(一种最后手段抗生素)的耐药性,进一步使治疗选择复杂化。本研究探讨了由聚-[2,6-(4,4-双-(2-乙基己基)-4-环戊-[2,1-;3,4-']-二噻吩)-4,7-(2,1,3-苯并噻二唑)](PCPDTBT纳米颗粒)制成的共轭聚合物纳米颗粒用于抗多重耐药、革兰氏阳性大肠杆菌菌株的抗菌光热疗法(PPT)的潜力。PCPDTBT纳米颗粒通过纳米沉淀法合成,并对其在806nm(1.13W)近红外(NIR)激光照射下的光热响应进行了表征。这些纳米颗粒在近红外范围内表现出高效吸收,并产生足以使细菌失活的大量光热加热。PCPDTBT纳米颗粒在多个照射周期中保持其光热性能而不降解。光灭活试验证实了PCPDTBT纳米颗粒(17mg/L)显著降低细菌活力的能力,特别是对革兰氏阳性大肠杆菌。扫描电子显微镜(SEM)图像证实了光热处理后细菌细胞受到明显损伤。总体而言,PCPDTBT纳米颗粒作为针对抗生素耐药病原体的PPT独立剂具有很大前景,表明它们在未来治疗策略中的潜力。