Zhang Wenqi, Tang Rong, Chen Huan
College of the Environment & Ecology, Jiangsu Open University, Nanjing 210017, China.
Jiangsu Engineering and Technology Centre for Ecological and Environmental Protection in Urban and Rural Water Environment Management and Low Carbon Development, Nanjing 210017, China.
ACS Omega. 2025 Aug 28;10(35):39680-39692. doi: 10.1021/acsomega.5c02988. eCollection 2025 Sep 9.
Pathogenic in wastewater necessitates energy-efficient disinfection methods. This study developed cobalt-doped manganese oxide (CoMnO ) catalysts via redox-hydrothermal synthesis for low-temperature thermocatalytic disinfection. Systematic characterization (XRD, SEM, and XPS) revealed that Co doping induced a phase transition from α-MnO to δ-MnO, forming nanoflower-like structures with enhanced oxygen vacancies and optimized Mn /Mn ratios. The optimized CoMnO catalyst achieved complete inactivation of K-12 (5.3 lg CFU mL) within 1 h at 50 °C, significantly outperforming pure MnO and CoO. Mechanistic studies identified superoxide radicals (·O ) and singlet oxygen (O) as the dominant reactive oxygen species (ROS), generated through lattice oxygen release and oxygen vacancy regeneration via the Mars-van Krevelen mechanism. ROS-induced membrane damage led to intracellular leakage and enzyme inactivation. The catalyst demonstrated good stability (>99.5% efficiency after four cycles) and efficacy across a relevant pH range (5.5-7.5). This work presents a sustainable strategy for efficient low-temperature water disinfection using transition metal oxide catalysts.
废水中的病原体需要节能的消毒方法。本研究通过氧化还原水热合成法制备了钴掺杂氧化锰(CoMnO )催化剂用于低温热催化消毒。系统表征(XRD、SEM和XPS)表明,Co掺杂导致α-MnO向δ-MnO发生相变,形成具有增强氧空位和优化Mn /Mn 比例的纳米花状结构。优化后的CoMnO 催化剂在50°C下1小时内可实现对K-12(5.3 lg CFU mL)的完全灭活,显著优于纯MnO和CoO。机理研究确定超氧自由基(·O )和单线态氧(O)为主要的活性氧物种(ROS),它们通过Mars-van Krevelen机制通过晶格氧释放和氧空位再生产生。ROS诱导的膜损伤导致细胞内物质泄漏和酶失活。该催化剂表现出良好的稳定性(四个循环后效率>99.5%),并且在相关pH范围(5.5 - 7.5)内有效。这项工作提出了一种使用过渡金属氧化物催化剂进行高效低温水消毒的可持续策略。