Panella Micaela, Rabadi Amani, Ceja-Vega Jasmin, Said Jessica, Andersen Elizabeth, Mitchell Joseph, Ceja Jacqueline, Lee Sunghee
Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States.
ACS Omega. 2025 Aug 26;10(35):39884-39897. doi: 10.1021/acsomega.5c04177. eCollection 2025 Sep 9.
Understanding the interactions of per- and polyfluoroalkyl substances (PFAS) with bacterial membranes is essential for evaluating their ecological and health impacts. To mimic the diverse environments found in bacterial membranes, we constructed model membranes as bilayers, liposomes, and supported bilayers using binary lipid mixtures of 1,2-dioleoyl--glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl--glycero-3-phosphoethanolamine (DOPE), with 1,2-dioleoyl--glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DOPG)all sharing the same acyl chains but differing in headgroup types and charges. Our findings demonstrate that salts of perfluorooctanoic acid (PFOA) and perfluorobutanesulfonic acid (PFBS) induce concentration- and lipid-dependent disordering effect in membranes composed of DOPC/DOPG (3:1 mol ratio) and DOPE/DOPG (3:1 mol ratio). Water permeability measurements reveal that membranes with greater hydrogen bonding capacity and curvature stresssuch as those containing DOPEexhibit more pronounced increases in permeability upon PFAS exposure, indicating heightened susceptibility to disruption by these contaminants. Differential scanning calorimetry (DSC) shows that DOPE-DOPG mixtures display a more significant decrease in phase transition temperature ( ) and enthalpy compared to DOPC-DOPG membranes. Moreover, Raman and attenuated total reflectance infrared (ATR-IR) spectroscopies reveal a greater increase in lipid acyl chain disorder in DOPE-DOPG mixtures upon PFAS exposure. Collectively, these findings indicate that PFAS salts not only increase membrane permeability but also destabilize lipid packing and phase organization, with the most pronounced disordering effects observed in membranes containing DOPE. Taken together, our results highlight the complex interplay of electrostatic, van der Waals, and hydrogen bonding interactions that govern the effects of PFAS salts on bacterial membrane properties, as revealed by their differential impacts on permeability and lipid organization.
了解全氟和多氟烷基物质(PFAS)与细菌膜的相互作用对于评估它们对生态和健康的影响至关重要。为了模拟细菌膜中存在的多种环境,我们使用1,2 - 二油酰基 - 甘油 - 3 - 磷酸胆碱(DOPC)或1,2 - 二油酰基 - 甘油 - 3 - 磷酸乙醇胺(DOPE)与1,2 - 二油酰基 - 甘油 - 3 - 磷酸 - (1'-rac - 甘油)(钠盐)(DOPG)的二元脂质混合物构建了双层膜、脂质体和支撑双层膜模型——它们都具有相同的酰基链,但头部基团类型和电荷不同。我们的研究结果表明,全氟辛酸(PFOA)和全氟丁烷磺酸(PFBS)盐在由DOPC/DOPG(3:1摩尔比)和DOPE/DOPG(3:1摩尔比)组成的膜中诱导浓度和脂质依赖性的无序效应。水渗透性测量表明,具有更大氢键能力和曲率应力的膜——例如含有DOPE的膜——在接触PFAS后渗透性增加更为明显,表明对这些污染物破坏的敏感性更高。差示扫描量热法(DSC)表明,与DOPC - DOPG膜相比,DOPE - DOPG混合物的相变温度( )和焓的降低更为显著。此外,拉曼光谱和衰减全反射红外(ATR - IR)光谱显示,PFAS暴露后DOPE - DOPG混合物中脂质酰基链无序度增加更大。总体而言,这些发现表明PFAS盐不仅会增加膜的渗透性,还会破坏脂质堆积和相组织的稳定性,在含有DOPE的膜中观察到最明显的无序效应。综上所述,我们的结果突出了静电、范德华力和氢键相互作用之间的复杂相互作用,这些相互作用决定了PFAS盐对细菌膜特性的影响,这从它们对渗透性和脂质组织的不同影响中得以揭示。