Lindell Anna E, Grießhammer Anne, Michaelis Lena, Papagiannidis Dimitrios, Ochner Hannah, Kamrad Stephan, Guan Rui, Blasche Sonja, Ventimiglia Leandro N, Ramachandran Bini, Ozgur Hilal, Zelezniak Aleksej, Beristain-Covarrubias Nonantzin, Yam-Puc Juan Carlos, Roux Indra, Barron Leon P, Richardson Alexandra K, Martin Maria Guerra, Benes Vladimir, Morone Nobuhiro, Thaventhiran James E D, Bharat Tanmay A M, Savitski Mikhail M, Maier Lisa, Patil Kiran R
Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
Interfaculty Institute of Microbiology and Infection Medicine, M3 Research Center, Cluster of Excellence 'Controlling Microbes to Fight Infection', University of Tübingen, Tübingen, Germany.
Nat Microbiol. 2025 Jul;10(7):1630-1647. doi: 10.1038/s41564-025-02032-5. Epub 2025 Jul 1.
Per- and polyfluoroalkyl substances (PFAS) are persistent pollutants that pose major environmental and health concerns. While few environmental bacteria have been reported to bind PFAS, the interaction of PFAS with human-associated gut bacteria is unclear. Here we report the bioaccumulation of PFAS by 38 gut bacterial strains ranging in concentration from nanomolar to 500 μM. Bacteroides uniformis showed notable PFAS accumulation resulting in millimolar intracellular concentrations while retaining growth. In Escherichia coli, bioaccumulation increased in the absence of the TolC efflux pump, indicating active transmembrane transport. Cryogenic focused ion beam secondary-ion mass spectrometry confirmed intracellular localization of the PFAS perfluorononanoic acid (PFNA) in E. coli. Proteomic and metabolomic analysis of PFNA-treated cells, and the mutations identified following laboratory evolution, support these findings. Finally, mice colonized with human gut bacteria showed higher PFNA levels in excreted faeces than germ-free controls or those colonized with low-bioaccumulating bacteria. Together, our findings uncover the high PFAS bioaccumulation capacity of gut bacteria.
全氟和多氟烷基物质(PFAS)是持久性污染物,对环境和健康构成重大威胁。虽然据报道很少有环境细菌能结合PFAS,但PFAS与人体相关肠道细菌的相互作用尚不清楚。在此,我们报告了38种肠道细菌菌株对PFAS的生物累积情况,其浓度范围从纳摩尔到500μM。均匀拟杆菌显示出显著的PFAS累积,导致细胞内浓度达到毫摩尔级,同时保持生长。在大肠杆菌中,在没有TolC外排泵的情况下生物累积增加,表明存在主动跨膜运输。低温聚焦离子束二次离子质谱法证实了全氟壬酸(PFNA)在大肠杆菌中的细胞内定位。对PFNA处理细胞的蛋白质组学和代谢组学分析以及实验室进化后鉴定出的突变支持了这些发现。最后,用人类肠道细菌定殖的小鼠排出的粪便中PFNA水平高于无菌对照或用低生物累积性细菌定殖的小鼠。总之,我们的研究结果揭示了肠道细菌对PFAS的高生物累积能力。