Suppr超能文献

用于智能农业的人工智能驱动的自动化水培系统。

AI-powered automated hydroponic system for smart agriculture.

作者信息

Baraskar Prof Trupti, Khatri Viren, Kolhe Parimal, Katyarmal Mitheelesh, Khedekar Shaunak

机构信息

School of Computer Engineering, Dr.Vishwanath Karad MIT WORLD PEACE UNIVERSITY, Kothrud, Pune, Maharashtra, India.

出版信息

MethodsX. 2025 Aug 22;15:103579. doi: 10.1016/j.mex.2025.103579. eCollection 2025 Dec.

Abstract

This research presents an AI-powered automated hydroponic system designed to enhance the efficiency and sustainability of modern agriculture. The system integrates real-time environmental monitoring, automated nutrient management, and AI-based disease detection to optimize plant growth and minimize manual intervention. An ESP32 microcontroller collects data from specialized sensors measuring Total Dissolved Solids (TDS), pH, temperature, and light intensity. Data is wirelessly transmitted via MQTT to an EMQX broker, subsequently processed by an ExpressJS backend, and stored in a Firebase Realtime Database. A NextJS web application provides a user-friendly dashboard for visualization, alerts, and remote control. Automation is achieved using relay-controlled peristaltic and water pumps that adjust nutrient dosing and circulation based on sensor readings. A camera module captures plant images, which are analyzed by a CNN model running on a separate AI server to detect common spinach diseases like Anthracnose and Downy Mildew, enabling early intervention. This integrated system combines IoT, cloud data management, automation, and AI-based visual inspection to offer a comprehensive solution for precision hydroponic farming. Evaluation demonstrates high accuracy in disease detection, robust system performance, and significant potential for improving crop health, yield, and reducing manual labor in diverse agricultural settings. The system, along with its full codebase, has been made publicly available to promote reproducibility.• • •

摘要

本研究提出了一种由人工智能驱动的自动化水培系统,旨在提高现代农业的效率和可持续性。该系统集成了实时环境监测、自动化养分管理和基于人工智能的疾病检测功能,以优化植物生长并减少人工干预。一个ESP32微控制器从测量总溶解固体(TDS)、pH值、温度和光照强度的专用传感器收集数据。数据通过MQTT无线传输到一个EMQX代理,随后由一个ExpressJS后端进行处理,并存储在一个Firebase实时数据库中。一个NextJS Web应用程序提供了一个用户友好的仪表板,用于可视化、警报和远程控制。使用继电器控制的蠕动泵和水泵实现自动化,这些泵根据传感器读数调整养分投加和循环。一个摄像头模块捕捉植物图像,由在单独的人工智能服务器上运行的CNN模型进行分析,以检测常见的菠菜疾病,如炭疽病和霜霉病,从而实现早期干预。这个集成系统结合了物联网、云数据管理、自动化和基于人工智能的视觉检测,为精准水培农业提供了一个全面的解决方案。评估表明,该系统在疾病检测方面具有很高的准确性,系统性能稳健,在不同农业环境中改善作物健康、产量以及减少人工劳动方面具有巨大潜力。该系统及其完整的代码库已公开提供,以促进可重复性。• • •

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df1/12423342/cf520025d5d9/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验