Gaidatzis Dimos, Graf-Landua Maike, Methot Stephen P, Wölk Michaela, Brancati Giovanna, Hauser Yannick P, Meeuse Milou, Nahar Smita, Braun Kathrin, van der Does Marit, Aluri Sirisha, Kohler Hubertus, Smallwood Sebastien, Großhans Helge
Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
bioRxiv. 2025 Sep 4:2025.09.04.674194. doi: 10.1101/2025.09.04.674194.
Genetic oscillators drive precisely timed gene expression, crucial for development and physiology. Using the molting clock as a model, we investigate how oscillators can schedule the orderly expression of thousands of genes. Single cell RNA sequencing reveals a broad peak phase dispersion in individual issues, mirrored by rhythmic changes in chromatin accessibility at thousands of regulatory elements identified by time-resolved ATAC-seq. We develop a linear model to predict chromatin dynamics based on the binding of >200 transcription factors. This identifies nine key regulators acting additively to determine the peak phase and amplitude of each regulatory element. Strikingly, these factors can also generate constitutive, non-rhythmic activity through destructive interference. Validating its power, the model accurately predicts the impact of GRH-1/Grainyhead perturbation on both chromatin and transcript dynamics. This work provides a conceptual framework for understanding how combinatorial, non-cooperative transcription factor binding schedules complex gene expression patterns in development and other dynamic biological processes.
基因振荡器驱动精确计时的基因表达,这对发育和生理过程至关重要。以蜕皮时钟为模型,我们研究振荡器如何安排数千个基因的有序表达。单细胞RNA测序揭示了单个组织中广泛的峰值相位分散,这在通过时间分辨ATAC-seq鉴定的数千个调控元件处的染色质可及性的节律性变化中得到反映。我们开发了一个线性模型,基于200多种转录因子的结合来预测染色质动态。这确定了九个关键调节因子,它们以加性方式作用以确定每个调控元件的峰值相位和幅度。引人注目的是,这些因子还可以通过相消干涉产生组成性的、无节律的活性。验证了其效力后,该模型准确预测了GRH-1/颗粒头扰动对染色质和转录动态的影响。这项工作为理解组合性、非合作性转录因子结合如何在发育和其他动态生物学过程中安排复杂的基因表达模式提供了一个概念框架。