Suppr超能文献

一种用于节律性基因表达的调度器。

A scheduler for rhythmic gene expression.

作者信息

Gaidatzis Dimos, Graf-Landua Maike, Methot Stephen P, Wölk Michaela, Brancati Giovanna, Hauser Yannick P, Meeuse Milou, Nahar Smita, Braun Kathrin, van der Does Marit, Aluri Sirisha, Kohler Hubertus, Smallwood Sebastien, Großhans Helge

机构信息

Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.

SIB Swiss Institute of Bioinformatics, Basel, Switzerland.

出版信息

bioRxiv. 2025 Sep 4:2025.09.04.674194. doi: 10.1101/2025.09.04.674194.

Abstract

Genetic oscillators drive precisely timed gene expression, crucial for development and physiology. Using the molting clock as a model, we investigate how oscillators can schedule the orderly expression of thousands of genes. Single cell RNA sequencing reveals a broad peak phase dispersion in individual issues, mirrored by rhythmic changes in chromatin accessibility at thousands of regulatory elements identified by time-resolved ATAC-seq. We develop a linear model to predict chromatin dynamics based on the binding of >200 transcription factors. This identifies nine key regulators acting additively to determine the peak phase and amplitude of each regulatory element. Strikingly, these factors can also generate constitutive, non-rhythmic activity through destructive interference. Validating its power, the model accurately predicts the impact of GRH-1/Grainyhead perturbation on both chromatin and transcript dynamics. This work provides a conceptual framework for understanding how combinatorial, non-cooperative transcription factor binding schedules complex gene expression patterns in development and other dynamic biological processes.

摘要

基因振荡器驱动精确计时的基因表达,这对发育和生理过程至关重要。以蜕皮时钟为模型,我们研究振荡器如何安排数千个基因的有序表达。单细胞RNA测序揭示了单个组织中广泛的峰值相位分散,这在通过时间分辨ATAC-seq鉴定的数千个调控元件处的染色质可及性的节律性变化中得到反映。我们开发了一个线性模型,基于200多种转录因子的结合来预测染色质动态。这确定了九个关键调节因子,它们以加性方式作用以确定每个调控元件的峰值相位和幅度。引人注目的是,这些因子还可以通过相消干涉产生组成性的、无节律的活性。验证了其效力后,该模型准确预测了GRH-1/颗粒头扰动对染色质和转录动态的影响。这项工作为理解组合性、非合作性转录因子结合如何在发育和其他动态生物学过程中安排复杂的基因表达模式提供了一个概念框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/403c/12424674/ceec5a6c0073/nihpp-2025.09.04.674194v1-f0001.jpg

相似文献

1
A scheduler for rhythmic gene expression.
bioRxiv. 2025 Sep 4:2025.09.04.674194. doi: 10.1101/2025.09.04.674194.
6
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
7
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
10

本文引用的文献

1
Dynamics of miRNA accumulation during C. elegans larval development.
Nucleic Acids Res. 2024 May 22;52(9):5336-5355. doi: 10.1093/nar/gkae115.
2
A circadian-like gene network programs the timing and dosage of heterochronic miRNA transcription during C. elegans development.
Dev Cell. 2023 Nov 20;58(22):2563-2579.e8. doi: 10.1016/j.devcel.2023.08.006. Epub 2023 Aug 28.
3
C. elegans molting requires rhythmic accumulation of the Grainyhead/LSF transcription factor GRH-1.
EMBO J. 2023 Feb 15;42(4):e111895. doi: 10.15252/embj.2022111895. Epub 2023 Jan 23.
5
Gene expression oscillations in C. elegans underlie a new developmental clock.
Curr Top Dev Biol. 2021;144:19-43. doi: 10.1016/bs.ctdb.2020.11.001. Epub 2020 Dec 7.
6
An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C. elegans Development.
Curr Biol. 2021 Feb 22;31(4):809-826.e6. doi: 10.1016/j.cub.2020.11.060. Epub 2020 Dec 22.
8
Molecular mechanisms and physiological importance of circadian rhythms.
Nat Rev Mol Cell Biol. 2020 Feb;21(2):67-84. doi: 10.1038/s41580-019-0179-2. Epub 2019 Nov 25.
9
Chromatin accessibility dynamics across development and ageing.
Elife. 2018 Oct 26;7:e37344. doi: 10.7554/eLife.37344.
10
The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of and Transcription Factors.
Genetics. 2018 Mar;208(3):937-949. doi: 10.1534/genetics.117.300657. Epub 2017 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验