Tiwari Ratnakar, Kravtsova Olha, Dissanayake Lashodya V, Lowe Melissa, Xu Biyang, Levchenko Vladislav, Didik Steven, Bohovyk Ruslan, Ilatovskaya Daria V, Palygin Oleg, Staruschenko Alexander
Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602.
Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912.
bioRxiv. 2025 Sep 1:2025.08.27.672714. doi: 10.1101/2025.08.27.672714.
Salt-sensitive hypertension is a prevalent and clinically significant subtype of hypertension, where increased dietary salt intake elevates blood pressure and causes injury to multiple organ systems. Despite extensive research, dynamic molecular changes and conserved versus organ-specific transcriptional programs in hypertensive multi-organ damage remain poorly understood. Defining complex molecular pathways both in a temporal sequence and in an organ-specific manner is essential for developing targeted, precision therapies to mitigate hypertensive disease burden.
We generated a longitudinal multi-organ transcriptomic atlas of salt-sensitive hypertension using RNA sequencing of kidney cortex, kidney medulla, heart, and liver from Dahl salt-sensitive rats across four disease stages. A comprehensive bioinformatic analysis mapped dynamic transcriptional programs, evaluated 50 biological pathways, and defined upstream regulators. Histological and biochemical assays complemented transcriptomic analysis, while integration with human genome-wide association studies (GWAS) and compound-transcriptome analysis provided translational insights and identified candidate therapeutics.
Salt-induced hypertension elicited both shared and tissue-specific transcriptional programs that evolved with disease progression. The kidney medulla showed robust early immune activation with metabolic suppression, while the cortex exhibited transient metabolic activation before declining and initiating immune activation. The liver and heart showed time-dependent metabolic and inflammatory remodeling. Cross-organ comparisons revealed a shared early proliferative response that converged on proinflammatory and fibrotic signatures. Upstream regulator analysis identified 79 time- and tissue-specific transcription factors associated with gene expression dynamics. GWAS integration analysis revealed endocrine signaling, ion transport, lipid metabolism, and detoxification as conserved pathways across species, underscoring the translational relevance of the model and study. Predictive compound-transcriptome analyses identified kinase inhibitors targeting phosphoinositide 3-kinase, mechanistic target of rapamycin and cyclin-dependent kinases as top candidates to counteract maladaptive transcriptional programs.
This study defines temporal and tissue-specific transcriptomic remodeling in salt-sensitive hypertension and highlights the need for precision interventions to prevent progressive organ damage.
盐敏感性高血压是一种常见且具有临床意义的高血压亚型,饮食中盐摄入量增加会升高血压,并对多个器官系统造成损伤。尽管进行了广泛研究,但高血压多器官损伤中的动态分子变化以及保守与器官特异性转录程序仍知之甚少。以时间顺序和器官特异性方式定义复杂的分子途径对于开发有针对性的精准疗法以减轻高血压疾病负担至关重要。
我们利用RNA测序技术,对达利盐敏感性大鼠在四个疾病阶段的肾皮质、肾髓质、心脏和肝脏进行检测,生成了盐敏感性高血压的纵向多器官转录组图谱。全面的生物信息学分析绘制了动态转录程序,评估了50条生物学途径,并确定了上游调节因子。组织学和生化分析补充了转录组分析,同时与人类全基因组关联研究(GWAS)以及化合物 - 转录组分析相结合,提供了转化见解并确定了候选治疗药物。
盐诱导的高血压引发了与疾病进展相关的共同和组织特异性转录程序。肾髓质显示出强大的早期免疫激活并伴有代谢抑制,而皮质在下降并开始免疫激活之前表现出短暂的代谢激活。肝脏和心脏表现出时间依赖性的代谢和炎症重塑。跨器官比较揭示了共同的早期增殖反应,这些反应汇聚在促炎和纤维化特征上。上游调节因子分析确定了79个与基因表达动态相关的时间和组织特异性转录因子。GWAS整合分析揭示了内分泌信号传导、离子转运、脂质代谢和解毒是跨物种的保守途径,强调了该模型和研究的转化相关性。预测性化合物 - 转录组分析确定靶向磷酸肌醇3激酶、雷帕霉素机制靶点和细胞周期蛋白依赖性激酶的激酶抑制剂是对抗适应性不良转录程序的顶级候选药物。
本研究定义了盐敏感性高血压中时间和组织特异性的转录组重塑,并强调了精准干预以预防进行性器官损伤的必要性。