Suppr超能文献

单细胞来源的黑色素瘤亚克隆的长读长测序揭示了不同且平行的基因组和表观基因组进化轨迹。

Long-read sequencing of single cell-derived melanoma subclones reveals divergent and parallel genomic and epigenomic evolutionary trajectories.

作者信息

Liu Yuelin, Goretsky Anton, Keskus Ayse G, Malikic Salem, Ahmad Tanveer, Gertz E Michael, Mehrabadi Farid Rashidi, Kelly Michael, Hernandez Maria, Seibert Charlie, Caravaca Juan Manuel, Kline Kayla, Zhao Yongmei, Wu Ying, Shrestha Biraj, Tran Bao, Ghosh Arindam, Cui Xiwen, Sassano Antonella, Malik Laksh, Baker Breeana, Blauwendraat Cornelis, Billingsley Kimberley J, Perez-Guijarro Eva, Merlino Glenn, Molloy Erin K, Sahinalp S Cenk, Day Chi-Ping, Kolmogorov Mikhail

机构信息

Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Department of Computer Science, University of Maryland, College Park, MD, USA.

出版信息

bioRxiv. 2025 Sep 2:2025.08.28.672865. doi: 10.1101/2025.08.28.672865.

Abstract

Tumor evolution is driven by various mutational processes, ranging from single-nucleotide variants (SNVs) to large structural variants (SVs) to dynamic shifts in DNA methylation. Current short-read sequencing methods struggle to accurately capture the full spectrum of these genomic and epigenomic alterations due to inherent technical limitations. To overcome that, here we introduce an approach for long-read sequencing of single-cell derived subclones, and use it to profile 23 subclones of a mouse melanoma cell line, characterized with distinct growth phenotypes and treatment responses. We develop a computational framework for harmonization and joint analysis of different variant types in the evolutionary context. Uniquely, our framework enables detection of recurrent amplifications of putative driver genes, generated by independent SVs across different lineages, suggesting parallel evolution. In addition, our approach revealed gradual and lineage-specific methylation changes associated with aggressive clonal phenotypes. We also show our set of phylogeny-constrained variant calls along with openly released sequencing data can be a valuable resource for the development of new computational methods.

摘要

肿瘤进化由多种突变过程驱动,范围从单核苷酸变异(SNV)到大型结构变异(SV),再到DNA甲基化的动态变化。由于固有的技术限制,当前的短读长测序方法难以准确捕获这些基因组和表观基因组改变的全貌。为了克服这一问题,我们在此引入一种对单细胞衍生亚克隆进行长读长测序的方法,并使用该方法对小鼠黑色素瘤细胞系的23个亚克隆进行分析,这些亚克隆具有不同的生长表型和治疗反应。我们开发了一个计算框架,用于在进化背景下对不同变异类型进行协调和联合分析。独特的是,我们的框架能够检测由不同谱系中独立的SV产生的假定驱动基因的反复扩增,提示平行进化。此外,我们的方法揭示了与侵袭性克隆表型相关的渐进性和谱系特异性甲基化变化。我们还表明,我们的一组受系统发育约束的变异调用以及公开发布的测序数据可以成为开发新计算方法的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/952a/12424993/46b455dc5a81/nihpp-2025.08.28.672865v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验