Suppr超能文献

PATTY校正开放染色质偏差,以改进整体和单细胞CUT&Tag分析。

PATTY corrects open chromatin bias for improved bulk and single-cell CUT&Tag profiling.

作者信息

Hu Shengen Shawn, Su Zhangli, Liu Lin, Chen Qingying, Grieco Megan C, Tian Mengxue, Dutta Anindya, Zang Chongzhi

机构信息

Department of Genome Sciences, University of Virginia, Charlottesville, VA 22908, USA.

UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

bioRxiv. 2025 Sep 7:2025.09.02.673784. doi: 10.1101/2025.09.02.673784.

Abstract

Precise profiling of epigenomes is essential for better understanding chromatin biology and gene regulation. Cleavage Under Targets & Tagmentation (CUT&Tag) is an efficient epigenomic profiling technique that can be performed on a low number of cells and at the single-cell level. With its growing adoption, CUT&Tag datasets spanning diverse biological systems are rapidly accumulating in the field. CUT&Tag assays use the hyperactive transposase Tn5 for DNA tagmentation. Tn5's preference toward accessible chromatin alters CUT&Tag sequence read distributions in the genome and introduces open chromatin bias that can confound downstream analysis, an issue more substantial in sparse single-cell data. We show that open chromatin bias extensively exists in published CUT&Tag datasets, including those generated with recently optimized high-salt protocols. To address this challenge, we present PATTY (Propensity Analyzer for Tn5 Transposase Yielded bias), a comprehensive computational method that corrects open chromatin bias in CUT&Tag data by leveraging accompanying ATAC-seq. By integrating transcriptomic and epigenomic data using machine learning and integrative modeling, we demonstrate that PATTY enables accurate and robust detection of occupancy sites for both active and repressive histone modifications, including H3K27ac, H3K27me3, and H3K9me3, with experimental validation. We further develop a single-cell CUT&Tag analysis framework built on PATTY and show improved cell clustering when using bias-corrected single-cell CUT&Tag data compared to using uncorrected data. Beyond CUT&Tag, PATTY sets a foundation for further development of bias correction methods for improving data analysis for all Tn5-based high-throughput assays.

摘要

精确描绘表观基因组对于更好地理解染色质生物学和基因调控至关重要。靶向切割与标记(CUT&Tag)是一种高效的表观基因组分析技术,可在少量细胞甚至单细胞水平上进行。随着其应用的不断增加,跨多种生物系统的CUT&Tag数据集在该领域迅速积累。CUT&Tag分析使用超活性转座酶Tn5进行DNA标记。Tn5对可及染色质的偏好会改变基因组中CUT&Tag序列读取分布,并引入开放染色质偏差,这可能会混淆下游分析,在稀疏的单细胞数据中这个问题更为突出。我们表明,开放染色质偏差广泛存在于已发表的CUT&Tag数据集中,包括那些使用最近优化的高盐方案生成的数据集。为应对这一挑战,我们提出了PATTY(Tn5转座酶产生偏差的倾向分析器),这是一种综合计算方法,通过利用伴随的ATAC-seq校正CUT&Tag数据中的开放染色质偏差。通过使用机器学习和整合建模整合转录组和表观基因组数据,我们证明PATTY能够通过实验验证准确且稳健地检测活性和抑制性组蛋白修饰(包括H3K27ac、H3K27me3和H3K9me3)的占据位点。我们进一步开发了一个基于PATTY的单细胞CUT&Tag分析框架,并表明与使用未校正数据相比,使用偏差校正后的单细胞CUT&Tag数据时细胞聚类得到改善。除了CUT&Tag,PATTY为进一步开发偏差校正方法奠定了基础,以改进所有基于Tn5的高通量分析的数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a91f/12424971/56bb569bca01/nihpp-2025.09.02.673784v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验