Gibbon Samuel R, Conover Justin L, Barker Michael S, Gutenkunst Ryan N
Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
bioRxiv. 2025 Sep 1:2025.08.28.672890. doi: 10.1101/2025.08.28.672890.
Polyploidy and whole genome duplication (WGD) are widespread biological phenomena with substantial cellular, meiotic, and genetic effects. Despite their prevalence and significance across the tree of life, population genetics theory for polyploids is not well developed. The lack of theoretical models limits our understanding of polyploid evolution and restricts our ability to harness polyploidy for crop improvement amidst increasing environmental stress. To address this gap, we developed and analyzed deterministic models of mutation-selection balance for tetraploids under polysomic (autotetraploid) and disomic (allotetraploid) inheritance patterns and arbitrary dominance relationships. We also introduced a new mathematical framework based on ordinary differential equations and nonlinear dynamics for analyzing the models. We find that autotetraploids approach Hardy-Weinberg Equilibrium 33% faster than allotetraploids, but the different tetraploid inheritance models show little differences in mutation load and allele frequency at mutation-selection balance. Our model also reveals two bistable points of mutation-selection balance for dominant alleles with biased mutation rates over a wide range of selection coefficients in the tetraploid models compared to bistability in only a narrow range for diploids. Finally, using discrete time simulations, we explore the temporal dynamics of allele frequency and fitness change and compare these dynamics to the predictions of Fisher's Fundamental Theorem of Natural Selection. While Fisher's predictions generally hold, we show that the bistable dynamics for dominant mutations fundamentally alter the associated temporal dynamics. Overall, this work develops foundational theoretical models that will facilitate the development of population genetic models and methodologies to study evolution in empirical tetraploid populations.
多倍体和全基因组复制(WGD)是广泛存在的生物学现象,具有显著的细胞、减数分裂和遗传效应。尽管它们在生命之树中普遍存在且意义重大,但多倍体的群体遗传学理论尚未得到充分发展。缺乏理论模型限制了我们对多倍体进化的理解,并限制了我们在环境压力不断增加的情况下利用多倍体进行作物改良的能力。为了填补这一空白,我们开发并分析了在多体(同源四倍体)和二体(异源四倍体)遗传模式以及任意显性关系下四倍体的突变 - 选择平衡的确定性模型。我们还引入了一个基于常微分方程和非线性动力学的新数学框架来分析这些模型。我们发现同源四倍体达到哈迪 - 温伯格平衡的速度比异源四倍体快33%,但不同的四倍体遗传模型在突变 - 选择平衡时的突变负荷和等位基因频率上差异不大。我们的模型还揭示了在四倍体模型中,与二倍体仅在狭窄范围内存在双稳态相比,具有偏倚突变率的显性等位基因在广泛的选择系数范围内存在两个突变 - 选择平衡的双稳态点。最后,使用离散时间模拟,我们探索了等位基因频率和适应度变化的时间动态,并将这些动态与费希尔自然选择基本定理的预测进行比较。虽然费希尔的预测总体上成立,但我们表明显性突变的双稳态动态从根本上改变了相关的时间动态。总体而言,这项工作开发了基础理论模型,将有助于群体遗传模型和方法的发展,以研究经验性四倍体群体中的进化。