Jo Kyeong Beom, Alruwaili Mohammed M, Kim Da-Eun, Koh Yongjun, Kim Hyeyeon, You Kwontae, Kim Ji-Sun, Sane Saba, Guo Yanqi, Wright Jacob P, Lim Hyobin Julianne, Naranjo Maricris N, Coté Atina G, Roth Frederick P, Hill David E, Choi Jung-Hyun, Lee Hunsang, Matreyek Kenneth A, Farh Kyle K-H, Park Jong-Eun, Kim Hyunkyung, Bakin Andrei V, Kim Dae-Kyum
Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montreal, Quebec, Canada.
Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
bioRxiv. 2025 Sep 7:2025.09.02.673780. doi: 10.1101/2025.09.02.673780.
Cancer drug resistance remains a major barrier to durable treatment success, often leading to relapse despite advances in precision oncology. While combination therapies are being increasingly investigated, such as chemotherapy with small molecule inhibitors, predicting drug response and identifying rational drug combinations based on resistance mechanisms remain major challenges. Therefore, a proteome-wide, single-gene overexpression screening platform is essential for guiding rational therapy selection. Here, we present (xb1-landing pad human RFeome-integrated system for a proteome-wide ene verexpression), a robust, scalable, and reproducible screening platform that enables single-copy, site-specific integration and overexpression of ~19,000 human ORFs across cancer cell models. Using BOGO, we identified drug-specific response drivers for 16 chemotherapeutic agents and integrated clinical datasets to uncover proliferation and resistance-associated genes with prognostic potential. Drug response similarity networks revealed both shared and unique mechanisms, highlighting key pathways such as autophagy, apoptosis, and Wnt signaling, and notable resistance-associated genes including BCL2, POLD2, and TRADD. In particular, we proposed a synergistic combination of the BCL2 family inhibitor ABT-263 (Navitoclax) and the DNA analog TAS-102 (Lonsurf), which revealed that lysosomal modulation is a key mechanism driving DNA analog resistance. This combination therapy selectively enhanced cytotoxicity in colorectal and pancreatic cancer cells , and demonstrated therapeutic benefit in both cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Together, these findings establish BOGO as a powerful gene overexpression perturbation platform for systematically identifying chemoresistance and chemosensitization drivers, and for discovering rational combination therapies. Its scalability and reproducibility position BOGO as a broadly applicable tool for functional genomics and therapeutic discovery beyond cancer resistance.
癌症耐药性仍然是持久治疗成功的主要障碍,尽管精准肿瘤学取得了进展,但往往仍会导致复发。虽然联合疗法(如化疗与小分子抑制剂联合)正在得到越来越多的研究,但预测药物反应并基于耐药机制确定合理的药物组合仍然是重大挑战。因此,一个全蛋白质组范围的单基因过表达筛选平台对于指导合理的治疗选择至关重要。在此,我们展示了(用于全蛋白质组基因过表达的xb1着陆垫人类RFeome整合系统),这是一个强大、可扩展且可重复的筛选平台,能够在癌细胞模型中实现约19000个人类开放阅读框(ORF)的单拷贝、位点特异性整合和过表达。使用BOGO,我们确定了16种化疗药物的药物特异性反应驱动因素,并整合临床数据集以发现具有预后潜力的增殖和耐药相关基因。药物反应相似性网络揭示了共同和独特的机制,突出了自噬、凋亡和Wnt信号传导等关键途径,以及包括BCL2、POLD2和TRADD在内的显著耐药相关基因。特别是,我们提出了BCL2家族抑制剂ABT - 263(纳维托克)和DNA类似物TAS - 102(朗斯弗)的协同组合,这表明溶酶体调节是驱动DNA类似物耐药的关键机制。这种联合疗法在结肠直肠癌和胰腺癌细胞中选择性增强了细胞毒性,并在细胞系衍生异种移植(CDX)和患者衍生异种移植(PDX)模型中都显示出治疗益处。总之,这些发现确立了BOGO作为一个强大的基因过表达扰动平台,用于系统地识别化学耐药和化学增敏驱动因素,并发现合理的联合疗法。其可扩展性和可重复性使BOGO成为功能基因组学和癌症耐药性以外的治疗发现的广泛适用工具。