Suppr超能文献

单细胞RNA测序分析中的分层标记基因选择

Hierarchical marker genes selection in scRNA-seq analysis.

作者信息

Sun Yutong, Qiu Peng

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2024 Dec 12;20(12):e1012643. doi: 10.1371/journal.pcbi.1012643. eCollection 2024 Dec.

Abstract

When analyzing scRNA-seq data containing heterogeneous cell populations, an important task is to select informative marker genes to distinguish various cell clusters and annotate the clusters with biologically meaningful cell types. In existing analysis methods and pipelines, marker genes are typically identified using a one-vs-all strategy, examining differential expression between one cell cluster versus the combination of all other cell clusters. However, this strategy applied to cell clusters belonging to closely related cell types often generates overlapping marker genes, which capture the common signature of closely related cell clusters but provide limited information for distinguishing them. To address the limitations of the one-vs-all strategy, we propose a hierarchical marker gene selection strategy that groups similar cell clusters and selects marker genes in a hierarchical manner. This strategy is able to improve the accuracy and interpretability of cell type identification in single-cell RNA-seq data.

摘要

在分析包含异质细胞群体的单细胞RNA测序(scRNA-seq)数据时,一项重要任务是选择信息丰富的标记基因,以区分不同的细胞簇并用具有生物学意义的细胞类型对这些簇进行注释。在现有的分析方法和流程中,标记基因通常使用一对一策略来识别,即检查一个细胞簇与所有其他细胞簇组合之间的差异表达。然而,这种策略应用于属于密切相关细胞类型的细胞簇时,往往会产生重叠的标记基因,这些基因捕获了密切相关细胞簇的共同特征,但为区分它们提供的信息有限。为了解决一对一策略的局限性,我们提出了一种分层标记基因选择策略,该策略对相似的细胞簇进行分组,并以分层方式选择标记基因。这种策略能够提高单细胞RNA测序数据中细胞类型识别的准确性和可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9054/11637363/5008dd64bd24/pcbi.1012643.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验