Ye Yongqiang, Lv Jianwei, Liu Huan, Xie Fei, Liu Hongbin
Department of Neurosurgery, Ziyang Central Hospital Ziyang 641300, Sichuan, China.
Am J Transl Res. 2025 Aug 15;17(8):6425-6433. doi: 10.62347/DGJX1401. eCollection 2025.
To identify risk factors for postoperative infection following intraspinal tumor (IT) resection, and to construct predictive models using a Logistic regression model and gradient boosting machine (GBM) algorithms.
A retrospective study was conducted on 136 patients who developed postoperative infections after IT resection at Ziyang Central Hospital from November 2013 to October 2024. Logistic regression and GBM models were developed using R 4.3.2.
Logistic regression analysis identified age >55 years, type II diabetes, operation time >3.3 h, interleukin-6 (IL-6)>5.5 ng/L, and procalcitonin (PCT)>0.3 ug/L as independent risk factors for infection after IT resection (<0.05). The logistic regression equation was: Logit () = -12.238 + 2.081 × Age + 1.118 × Type II diabetes + 1.381 × operation time + 2.131 × IL-6 + 1.843 × PCT. In the GBM model, the relative importance of variables was: age (23.13011), IL-6 (22.98775), type II diabetes (18.57776), PCT (17.86779), and operation time (17.73660). The areas under the ROC curves (AUC) was 0.886 for the logistic model and 0.907 for the GBM model. Calibration curves demonstrated good agreement between predicted and observed infection rates in both models.
The identified risk factors and the predictive models offer valuable tools for early identification and prevention of postoperative infection following IT resection.
确定脊髓肿瘤(IT)切除术后感染的危险因素,并使用逻辑回归模型和梯度提升机(GBM)算法构建预测模型。
对2013年11月至2024年10月在资阳中心医院接受IT切除术后发生感染的136例患者进行回顾性研究。使用R 4.3.2开发逻辑回归和GBM模型。
逻辑回归分析确定年龄>55岁、II型糖尿病、手术时间>3.3小时、白细胞介素-6(IL-6)>5.5 ng/L和降钙素原(PCT)>0.3 ug/L为IT切除术后感染的独立危险因素(<0.05)。逻辑回归方程为:Logit() = -12.238 + 2.081×年龄 + 1.118×II型糖尿病 + 1.381×手术时间 + 2.131×IL-6 + 1.843×PCT。在GBM模型中,变量的相对重要性为:年龄(23.13011)、IL-6(22.98775)、II型糖尿病(18.57776)、PCT(17.86779)和手术时间(17.73660)。逻辑模型的ROC曲线下面积(AUC)为0.886,GBM模型为0.907。校准曲线表明两个模型中预测感染率与观察到的感染率之间具有良好的一致性。
所确定的危险因素和预测模型为IT切除术后感染的早期识别和预防提供了有价值的工具。