Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Department of Gynecology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, China.
Medicine (Baltimore). 2023 Oct 13;102(41):e35439. doi: 10.1097/MD.0000000000035439.
Ovarian metastasis of endometrial carcinoma (EC) patients not only affects the decision of the surgeon, but also has a fatal impact on the fertility and prognosis of patients. This study aimed build a prediction model of ovarian metastasis of EC based on machine learning algorithm for clinical diagnosis and treatment management guidance. We retrospectively collected 536 EC patients treated in Hubei Cancer Hospital from January 2017 to October 2022 and 487 EC patients from Tongji Hospital (January 2017 to December 2020) as an external validation queue. The random forest model, gradient elevator model, support vector machine model, artificial neural network model (ANNM), and decision tree model were used to build ovarian metastasis prediction model for EC patients. The predictive efficacy of 5 machine learning models was evaluated by receiver operating characteristic curve and decision curve analysis. For screening of candidate predictors of ovarian metastasis of EC, the degree of tumor differentiation, lymph node metastasis, CA125, HE4, Alb, LH can be used as a potential predictor of ovarian metastasis prediction model in EC patients. The effectiveness of the prediction model constructed by the 5 machine learning algorithms was between (area under curve [AUC]: 0.729, 95% confidence interval [CI]: 0.674-0.784) and (AUC: 0.899, 95% CI: 0.844-0.954) in the training set and internal verification set, respectively. Among them, the ANNM was equipped with the best prediction effectiveness (training set: AUC: 0.899, 95% CI: 0.844-0.954) and (internal verification set: AUC: 0.892, 95% CI: 0.837-0.947). The prediction model of ovarian metastasis of EC patients based on machine learning algorithm can achieve satisfactory prediction efficiency, among which ANNM is the best, which can be used to guide clinicians in diagnosis and treatment and improve the prognosis of EC patients.
子宫内膜癌(EC)患者的卵巢转移不仅影响外科医生的决策,而且对患者的生育和预后也有致命影响。本研究旨在构建基于机器学习算法的 EC 卵巢转移预测模型,为临床诊断和治疗管理提供指导。我们回顾性收集了 2017 年 1 月至 2022 年 10 月在湖北省肿瘤医院治疗的 536 例 EC 患者和 2017 年 1 月至 2020 年 12 月在同济医院治疗的 487 例 EC 患者作为外部验证队列。使用随机森林模型、梯度提升机模型、支持向量机模型、人工神经网络模型(ANNM)和决策树模型构建 EC 患者卵巢转移预测模型。通过接收者操作特征曲线和决策曲线分析评估 5 种机器学习模型的预测效能。为筛选 EC 患者卵巢转移的候选预测因子,肿瘤分化程度、淋巴结转移、CA125、HE4、Alb、LH 可作为 EC 患者卵巢转移预测模型的潜在预测因子。5 种机器学习算法构建的预测模型在训练集和内部验证集中的有效性分别在(曲线下面积 [AUC]:0.729,95%置信区间 [CI]:0.674-0.784)和(AUC:0.899,95%CI:0.844-0.954)之间。其中,ANNM 具有最佳的预测效果(训练集:AUC:0.899,95%CI:0.844-0.954)和(内部验证集:AUC:0.892,95%CI:0.837-0.947)。基于机器学习算法的 EC 患者卵巢转移预测模型可达到令人满意的预测效率,其中 ANNM 效果最佳,可用于指导临床医生的诊断和治疗,提高 EC 患者的预后。