Suppr超能文献

机器学习能够基于糖尿病足感染患者不良情绪的风险因素构建列线图。

Machine learning enables construction of a nomogram based on risk factors for adverse emotions in patients with diabetic foot infection.

作者信息

Du Heng, Meng Baoqin, Ma Shixing, Zhu Chaochao, Liu Wenchi, Wang Zhaoxia

机构信息

Medical Department and Outpatient Service of Geriatric and Endocrinology Department, Baoji Central Hospital Baoji 721008, Shaanxi, China.

Ostomy Wound Care Outpatient Clinic, Baoji Central Hospital Baoji 721008, Shaanxi, China.

出版信息

Am J Transl Res. 2025 Aug 15;17(8):6056-6067. doi: 10.62347/ZWGQ9542. eCollection 2025.

Abstract

OBJECTIVE

To identify risk factors and construct a nomogram model using logistic regression to predict mood disturbance in patients with diabetic foot infection.

METHODS

We retrospectively analyzed 313 patients with diabetic foot infection who received treatment at our hospital between October 2020 and January 2023. Patients were grouped based on their post-treatment Self-Rating Anxiety Scale (SAS ≥50) and Self-Rating Depression Scale (SDS ≥53) scores into two groups: 134 patients with adverse mood and 179 with stable mood. The patients were divided into a test group (n=220) and a validation group (n=93) at a 7:3 ratio. Clinical data and laboratory indicators were collected to screen characteristic factors using four machine learning models. Common risk factors were screened using logistic regression, visualized, and incorporated into a nomogram. The clinical value, accuracy, and predictive value of the model were evaluated using receiver operating characteristic curves (ROCs), calibration curves, and decision curve analyses (DCAs).

RESULTS

Analysis identified Wagner classification, comorbidities, glycated hemoglobin (HbA1c), gender, and history of diabetes as common features across four machine learning models. Multifactorial logistic regression confirmed that Wagner classification, comorbidities, HbA1c, gender, and history of diabetes were independent risk factors for adverse mood in patients with diabetic foot infection. We constructed a nomogram based on the five characteristic factors. ROC curve analysis yielded an area under the curve (AUC) of 0.829, indicating high predictive accuracy for mood disturbances in the test group. Calibration curve and DCA analysis demonstrated the model's stability and clinical relevance, further supported by external validation.

CONCLUSION

This study enhanced the predictive accuracy for mood disorders in patients with diabetic foot infections by leveraging machine learning to identify and visualize significant risk factors through a nomogram. This may be a valuable tool for clinical assessments and intervention.

摘要

目的

识别危险因素并构建列线图模型,采用逻辑回归预测糖尿病足感染患者的情绪障碍。

方法

回顾性分析2020年10月至2023年1月在我院接受治疗的313例糖尿病足感染患者。根据治疗后自评焦虑量表(SAS≥50)和自评抑郁量表(SDS≥53)得分将患者分为两组:134例情绪不良患者和179例情绪稳定患者。患者按7:3的比例分为试验组(n=220)和验证组(n=93)。收集临床资料和实验室指标,使用四种机器学习模型筛选特征因素。采用逻辑回归筛选常见危险因素,进行可视化处理,并纳入列线图。使用受试者工作特征曲线(ROC)、校准曲线和决策曲线分析(DCA)评估模型的临床价值、准确性和预测价值。

结果

分析确定Wagner分级、合并症、糖化血红蛋白(HbA1c)、性别和糖尿病病史是四种机器学习模型的共同特征。多因素逻辑回归证实,Wagner分级、合并症、HbA1c、性别和糖尿病病史是糖尿病足感染患者情绪不良的独立危险因素。我们基于这五个特征因素构建了列线图。ROC曲线分析得出曲线下面积(AUC)为0.829,表明该模型对试验组情绪障碍具有较高的预测准确性。校准曲线和DCA分析证明了该模型的稳定性和临床相关性,外部验证进一步支持了这一点。

结论

本研究通过利用机器学习识别重要危险因素并通过列线图进行可视化,提高了糖尿病足感染患者情绪障碍的预测准确性。这可能是临床评估和干预的一个有价值的工具。

相似文献

本文引用的文献

5
What Are Diabetic Foot Ulcers?什么是糖尿病足溃疡?
JAMA. 2023 Dec 19;330(23):2314. doi: 10.1001/jama.2023.17291.
10
Diabetic Foot Ulcers: A Review.糖尿病足溃疡:综述。
JAMA. 2023 Jul 3;330(1):62-75. doi: 10.1001/jama.2023.10578.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验