Suppr超能文献

基于2007 - 2014年美国国家健康与营养检查调查构建2型糖尿病患者抑郁风险预测模型

Construction of a depression risk prediction model for type 2 diabetes mellitus patients based on NHANES 2007-2014.

作者信息

Yu Xinping, Tian Sheng, Wu Lanxiang, Zheng Heqing, Liu Mingxu, Wu Wei

机构信息

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330006, PR China.

Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330006, PR China.

出版信息

J Affect Disord. 2024 Mar 15;349:217-225. doi: 10.1016/j.jad.2024.01.083. Epub 2024 Jan 8.

Abstract

BACKGROUND

Type 2 diabetes mellitus (T2DM) is a prevalent global health issue that has been linked to an increased risk of depression. The objective of this study was to construct a nomogram model for predicting depression in T2DM patients.

METHODS

A total of 4280 patients with T2DM were included in this study from the 2007-2014 NHANES. The entire dataset was split randomly into training set comprising 70 % of the data and a validation set comprising 30 % of the data. LASSO and multivariate logistic regression analyses identified predictors significantly associated with depression, and the nomogram was constructed with these predictors. The model was assessed by C-index, calibration curve, the hosmer-lemeshow test and decision curve analysis (DCA).

RESULTS

The nomogram model comprised of 9 predictors, namely age, gender, PIR, BMI, education attainment, smoking status, LDL-C, sleep duration and sleep disorder. The C-index of the training set was 0.780, while that of the validation set was 0.752, indicating favorable discrimination for the model. The model exhibited excellent clinical applicability and calibration in both the training and validation datasets. Moreover, the cut-off value of the nomogram is 223.

LIMITATIONS

This study has shortcomings in data collection, lack of external validation, and results non-extrapolation.

CONCLUSIONS

Our nomogram exhibits high clinical predictability, enabling clinicians to utilize this tool in identifying high-risk depressed patients with T2DM. It has the potential to decrease the incidence of depression and significantly improve the prognosis of patients with T2DM.

摘要

背景

2型糖尿病(T2DM)是一个普遍存在的全球健康问题,与抑郁症风险增加有关。本研究的目的是构建一个用于预测T2DM患者抑郁症的列线图模型。

方法

本研究纳入了2007 - 2014年美国国家健康与营养检查调查(NHANES)中的4280例T2DM患者。整个数据集被随机分为包含70%数据的训练集和包含30%数据的验证集。通过LASSO和多变量逻辑回归分析确定与抑郁症显著相关的预测因素,并使用这些预测因素构建列线图。通过C指数、校准曲线、霍斯默 - 莱梅肖检验和决策曲线分析(DCA)对模型进行评估。

结果

列线图模型由9个预测因素组成,即年龄、性别、贫困收入比(PIR)、体重指数(BMI)、教育程度、吸烟状况、低密度脂蛋白胆固醇(LDL - C)、睡眠时间和睡眠障碍。训练集的C指数为0.780,验证集的C指数为0.752,表明该模型具有良好的区分度。该模型在训练集和验证数据集中均表现出出色的临床适用性和校准性。此外,列线图的截断值为223。

局限性

本研究在数据收集方面存在不足,缺乏外部验证,且结果无法外推。

结论

我们的列线图具有较高的临床预测性,使临床医生能够利用该工具识别T2DM高危抑郁症患者。它有可能降低抑郁症的发病率,并显著改善T2DM患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验